
Detecting Multi-file Vulnerabilities Using Code Property
Graphs

PIC2 - Master in Computer Science and Engineering
Instituto Superior Técnico, Universidade de Lisboa

Guilherme Figueira da Silva Gonçalves — 95585∗
guilherme.silva.goncalves@tecnico.ulisboa.pt

Advisors: José Santos & Pedro Adão

AbstractTheWorldWideWeb, initially conceived for facilitating information sharing amongCERN researchers,
has evolved into a vital force driving social transformation and economic impact in our daily lives. JavaScript,
a key programming language in web development, allows for dynamic and interactive content in browsers.
Node.js further revolutionizes web development by extending JavaScript’s influence across the entire devel-
opment stack, facilitating the creation of scalable websites. However, Node.js faces security challenges due to
JavaScript’s language-specific behavior, leading to vulnerabilities often overlooked by developers. Addition-
ally, the Node PackageManager (NPM) introduces risks, as its vast repository of community-managed packages
may contain vulnerabilities. To address these issues, static analysis tools employing graph-based approaches,
such as Graph.js and ODGen, have proven effective. This work focuses on enhancing Graph.js, acknowledging
its limitations in modular reasoning, particularly regarding the handling of external modules. We propose two
strategies, Complex Graph with Simple Queries and Simple Graph with Complex Queries, aiming to improve
Graph.js’s accuracy by reducing false positives. The upgraded Graph.js version will be evaluated on SecBench
and Vulcan datasets, comparing results with competitors ODGen and CodeQL. The anticipated outcome is an
improved Graph.js, offering better support for modular reasoning and enhanced reliability in static analysis for
Node.js applications. The goal is to strengthen Graph.js, making it a more reliable tool for static analysis in
Node.js applications that can be integrated in the CI/CD pipelines. The document provides background infor-
mation in Section 2, outlines related work in Section 3, details the proposed solution in Section 4, presents the
evaluation and planning methods in Section 5, and concludes with a summary and remarks in Section 6.

Keywords — Static Analysis, Node.js, Modularity, Vulnerability Detection, Code Property Graph

∗I declare that this document is an original work of my own authorship and that it fulfills all the requirements of the
Code of Conduct and Good Practices of the Universidade de Lisboa (https://nape.tecnico.ulisboa.pt/en/apoio-ao-estudante/
documentos-importantes/regulamentos-da-universidade-de-lisboa/).

mailto:guilherme.silva.goncalves@tecnico.ulisboa.pt
https://nape.tecnico.ulisboa.pt/en/apoio-ao-estudante/documentos-importantes/regulamentos-da-universidade-de-lisboa/
https://nape.tecnico.ulisboa.pt/en/apoio-ao-estudante/documentos-importantes/regulamentos-da-universidade-de-lisboa/

Contents
1 Introduction 3

2 Background 4
2.1 Modularity in JavaScript and Node.js . 4

2.1.1 Modularity in JavaScript . 4
2.1.2 Modularity in Node.js . 4

2.2 Node.js Security Model . 5
2.2.1 Taint-Style Vulnerabilities . 5
2.2.2 Other types of vulnerabilities . 6

2.3 Graph.js . 7
2.3.1 Running Example . 8
2.3.2 Graph Constructor Module . 8
2.3.3 Query Execution Engine . 10
2.3.4 Limitations . 10

3 Related Work 10
3.1 Node.js Security . 11

3.1.1 Managing Third-Party Package Inclusion . 11
3.1.2 Benchmarks and Empirical Studies . 12

3.2 Vulnerability Detection in Node.js applications . 12

4 Proposed Solution 14
4.1 Complex Graph with Simple Queries . 14
4.2 Simple Graph with Complex Queries . 15
4.3 Comparing both Strategies . 17

5 Evaluation & Planning 17
5.1 Evaluation . 17

5.1.1 Dataset Characterization . 17
5.1.2 Evaluation Metrics . 18

5.2 Planning . 19

6 Conclusion 20

Bibliography 21

1 Introduction
In our day-to-day lives, the web plays a crucial role, evident in activities such as online communication

through platforms like email and social media, accessing information via search engines, and participating in
the digital economy through e-commerce platforms.

JavaScript stands out as a fundamental element in web development, being one of the most widely used
programming languages for executing code in web browsers. Its adaptability is crucial in creating dynamic and
interactive web content, thereby enhancing user experiences across the World Wide Web.

Node.js [1] has revolutionized web development by allowing the use of JavaScript across the entire devel-
opment spectrum. This extends the influence of JavaScript beyond the browser, empowering the creation of
scalable websites. Node.js offers an event-driven architecture and a non-blocking I/O model, contributing to the
efficiency and performance of web applications.

In spite of its advantages, Node.js struggles with its security. The language-specific behavior and dynamic
properties of JavaScript, including prototype-based inheritance, often lead less experienced developers to inad-
vertently introduce security vulnerabilities into their code. Developers can easily miss subtle security relevant
issues, such as improper input validation or unhandled exceptions, because they are hard to detect manually.
Instances like school attacks [2], where exploited vulnerabilities in web applications pose substantial threats to
essential systems and public safety, illustrate the severity of these concerns. For that reason, there is an urge to
automatically detect and mitigate vulnearbilities in Node.js.

In addition to the challenges outlined in the previous paragraph, the platform’s default package manager,
Node Package Manager (NPM) [3], also introduces vulnerabilities in Node.js applications. NPM hosts a repos-
itory with milions of packages [4] that are community-managed and come with their unique dependencies.
Within this repository, developers are responsible for managing vulnerabilities in their respective packages.
Consequently, many NPM packages are known to have vulnerabilities. For that reason, choosing a package
becomes a daunting task when aiming to develop secure code, as even well-intentioned developers may un-
intentionally introduce packages with vulnerabilities. These vulnerable packages can serve as potential entry
points for exploits, underscoring the challenges in ensuring the security of Node.js applications.

To address the challenges associated with manual vulnerability detection, static analysis emerges as a crucial
strategy for automatically identifying and mitigating vulnerabilities. Although there are many approaches to
statically analyse JavaScript code, graph-based approaches, employed by tools such as Graph.js [5] and ODGen
[6], have proved to be effective at detecting a variety of vulnerabilities. These tools construct a Code Property
Graph (CPG) that represents the program and execute queries on it to detect vulnerabilities. Graph.js exhibits
fewer false positives and is more efficient than the second best tool, ODGen, in two benchmarks: SechBench [7]
and Vulcan [8]. For that reason, we believe, to the best of our knowledge, that Graph.js leads the field.

Despite its good results, Graph.js has some limitations. The tool struggles to address usage of modules in code
effectively. Graph.js categorizes the return values of function calls as unsafe, regardless of the attacker’s control
over them. This strategy leads to an increased number of false positives, reducing the tool’s overall effectiveness.
To this end, we will implement two different strategies for modular analysis of taint flows in Node.js applications
and their respective queries. We focus on injection vulnerabilities, given their significant appearance in Node.js
applications. More concretely, our work makes the following contributions:

1. Complex Graph with Simple Queries Strategy: This strategy involves consolidating the graphs from
different modules into a unified graph and establishing connections between the nodes in both graphs. To
this end, we propose adding new nodes and edges to the graphs in order to ensure that graph models the
source code’s module features correctly.

2. Simple Graph with Complex Queries Strategy: This strategy involves consolidating graphs from vari-
ous modules into a unified representation of the entire application. Similar to the previous approach, we
propose the addition of new nodes and edges to the graphs to accurately capture the module features of
the source code. The proposed new nodes remain consistent across both strategies, while the new edges
differ. Unlike the previous strategy, we maintain the separation of the graphs, delegating the responsibility
of establishing connections between them to the queries. Furthermore, function call nodes now incorpo-
rate information about the specific function in the external module that could be called. With this added
information, function call nodes facilitate the queries’ job.

3

3. Queries for Vulnerability Detection in both strategies: This involves developing the new set of queries
capable of identifying vulnerabilities represented by the updated graphs. For the Complex Graphwith Sim-
ple Queries strategy, minimal adjustments to existing Graph.js queries suffice. Conversely, implementing
the Simple Graph with Complex Queries strategy requires the creation of two entirely new queries.

To evaluate our new version of Graph.js, we will run it on SecBench and Vulcan datasets, comparing its
results with our main competitors, ODGen and CodeQL [9]. We expect to improve Graph.js by reducing the
number of false positives.

The main contribution of this work is an upgraded version of Graph.js with improved support for modular
reasoning. This new version addresses the limitations of Graph.js, by reducing false positives and enhancing
accuracy. The goal is to strengthen Graph.js, making it a more reliable tool for static analysis in Node.js appli-
cations that can be integrated in the CI/CD pipelines.

This document is organized as follows. Section 2 provides the necessary background for this work. More
concretely, it overviews the Node.js security model, module usage in Node.js and JavaScript and introduces
Graph.js, the focus of this work. Section 3 overviews the most important reasearch efforts that are related to this
work. Section 4 describes the proposed solution for the problem. Section 5 addresses the evaluation methods
necessary and how the work will be carried out throughout the semester. Finally, section 6 brings the document
to a close, offering a recap of this work and some conclusion remarks.

2 Background
This section covers the basics of module usage in JavaScript and Node.js (Section 2.1), the Node.js security

model (Section 2.2), and introduces the Graph.js (Section 2.3). Understanding Graph.js is key here, since our
work aims to improve upon it.

2.1 Modularity in JavaScript and Node.js
In this subsection, we define modularity as the practice of segmenting one’s application into modules. These

modules can exist in one or multiple source files. A module is essentially anything that encapsulates units of
code, contributing to the overall organization and structure of a program. The benefits of having organized and
well-structured code are improved readability, reusability and abstraction. Listings 1 and 2 showcase the usage
of modules to organize an application. The only difference between the listings lies in how modules are handled
by both JavaScript and Node.js. The key differences will be addressed in the following subsections

2.1.1 Modularity in JavaScript

In the evolution of JavaScript, the concept of module usage changed from pre-ECMAScript 6 (ES5) to the
post-ECMAScript 6 era. Prior to ES6, creating modules relied on conventions, patterns, and third-party li-
braries. With the introduction of ES6, JavaScript offered native support for module usage through the import
and export keywords. These keywords standardized and simplified the process of defining and using modules
within JavaScript code. In Listing 1, we illustrate how import and exportwork, by showcasing the exportation
of a constant string (the string greeting) and a function (the sayHello function). In this example, Module 1
(lines 1 and 2) demonstrates the usage of the export keyword, while Module 2 (line 2) illustrates the usage of the
import keyword.

2.1.2 Modularity in Node.js

In the context of Node.js, the creation of modules has been facilitated through the CommonJS module sys-
tem. This system employs the require function for importing modules and the module.exports object for
exporting modules. Listing 2 illustrates the same modules from Listing 1, now adapted to the CommonJS system
in Node.js. This example demonstrates how modules are imported using the require function (line 2 of Module
2) and exported using the module.exports object (line 2 of Module 1) in Node.js.

4

1 // module1.js
2 export const greeting = "Hello";
3 export function sayHello(name) {
4 return `${greeting}, ${name}!`;
5 }

1 // module2.js
2 import { greeting, sayHello } from

'./module1';↩→

3 console.log(greeting); // Output: Hello
4 const message = sayHello("Alice");
5 console.log(message); // Output: Hello,

Alice!↩→

Listing 1: Modularity in ECMAScript 6 example

Additionally, Node.js version 12 added support for the ES6-style modules. It is important to note that, despite
this support for ES6-style modules, the underlying module loader behavior differs based on the syntax used.
Specifically, invoking require function always utilizes the CommonJS module loader. On the other hand, using
the import keyword relies on the ECMAScript module loader.

1 // module1.js
2 module.exports = {
3 greeting : "Hello",
4 sayHello: function(name) {
5 return `${greeting}, ${name}!`;
6 }
7 }

1 // module2.js
2 const module1 = require('./module1.js')
3 console.log(module1.greeting); // Output:

Hello↩→

4 const message = module1.sayHello("Alice");
5 console.log(message); // Output: Hello,

Alice!↩→

Listing 2: Modularity in Node.js

Node Package manager: Besides user-defined modules, Node.js offers the developer the ability to integrate
third-partymodules as packages into their projects, through its default packagemanager, Node PackageManager
(NPM) [3]. NPM serves as a central hub for sharing and obtaining packages in the Node.js ecosystem, facilitating
the distribution of reusable code components.

2.2 Node.js Security Model
Despite module usage offering numerous benefits, it also introduces vulnerabilities in Node.js applications.

The client-side of a Node.js application operates in a sandboxed environment and with limited privileges. On the
other hand, the server-side does not run in a sandboxed environment and often operates with elevated privileges.
For that reason, vulnerabilities exploited in the server-side of a Node.js application can compromise the whole
machine. In this subsection, we introduce the Node.js security model, offering an overview of the common
vulnerabilities found in Node.js applications.

2.2.1 Taint-Style Vulnerabilities

Taint-style vulnerabilities are type of vulnerabilities that often appear in Node.js applications. These vulner-
abilities involve data flowing from untrusted sources to sensitive sinks. Sources and sinks act like delimiters to
taint-style vulnerabilities, showing where unsafe data flows start and end.

• Sources: Sources refer to locations in the application where untrusted values enter the system. Sources
typically include the program entry points, such as web forms, query parameters, request bodies, files,
databases, and more. In the context of a module, we consider its parameters as sources if the function is
exported by the module and that module can be imported by unsafe code. In Listing 3, the source is the
argument b

• Sinks: Sinks are a function calls that trigger security-sensitive behavior. Data handled by sinks can influ-
ence or modify a program’s behavior, making it crucial to validate and sanitize data flows from a source
to a sink. In Listing 3, the sink is the call to the eval function.

5

Exploring a type of taint-style vulnerabilities in detail, we now focus on injection vulnerabilities, which are
common in Node.js applications and the focus of this work.

• Code Injection: Code injection vulnerabilities occur when an attacker-controlled string is passed to a
runtime evaluation API without proper sanitization. Notable sinks: eval and Function.

• OS Command Injection: OS command injection vulnerabilities occur when an attacker is able to di-
rectly impact the commands executed by the operating system. Notable sinks: child_process.exec,
child_process.spawn, and child_process.execFile.

• SQL Injection: SQL Injection vulnerabilities occur when attacker is able to manipulate a web application’s
SQL query by injecting malicious SQL code. Notable sinks: mysql.connection.query.

• Path Traversal: Path Traversal vulnerabilities occur when an attacker is able to access files or directories
outside the application’s scope. Notable sinks: fs.readFile and fs.createReadStream.

To illustrate injection vulnerabilities, Listing 3 offers an example of code injection. In this case, the attacker-
controlled variable b (source) reaches the eval call (sink) without proper sanitization. This lack of sanitization
creates a vulnerability, allowing the attacker to potentially execute arbitrary code.

For instance, if the attacker provides the string "process.exit(0)" as input, the program could be termi-
nated, because this input constitutes valid JavaScript code. For that reason, the subsequent eval call executes it,
terminating the program. Another analogous scenario involves providing the string "require(’child_process’)
.spawn(’cat /etc/passwd’)" as input. This input executes the command "cat /etc/passwd", which, in
Unix systems, reads the file /etc/passwd. For that reason, this input enables the attacker to read the contents
of the file containing user account and password information. Consequently, this data can be extracted and
potentially exploited to gain unauthorized access to the compromised system.

Both exploits underscore the substantial risks linked to code injection vulnerabilities. For that reason, ad-
dressing these vulnerabilities is crucial for ensuring the integrity and safety of the application. This emphasizes
the importance of implementing robust validation and sanitization mechanisms.

1 module.exports = function(b) {
2 if(b){
3 eval(b);
4 }
5 }

Listing 3: Code injection Example

2.2.2 Other types of vulnerabilities

Beyond the previously mentioned vulnerabilities, Node.js applications may exhibit additional types of vul-
nerabilities. Below, we list four other vulnerability types that will not be addressed in this work.

• Prototype Pollution: Prototype Pollution vulnerabilities occur when an attacker is able to update a
built-in JavaScript property through the object’s prototype chain. This update alters the behavior of all
JavaScript object of the corresponding type.

• Cross-Site Request Forgery (CSRF): CSRF vulnerabilities occur when an authenticated end user uninten-
tionally executes unwanted actions on a web application. With the aid of social engineering, an attacker
may deceive the victim into carrying out actions chosen by the attacker. This could include state-changing
operations like transferring funds or altering their email, for regular users. For users with administrative
permissions, it can lead to compromising the entire web application.

• Denial of Service (Dos): A Denial of Service vulnerabilities occur when an attacker is capable of tem-
porarily or permanently disrupting a website or service, rendering it unavailable to users.

6

Figure 1: Graph.js Architecture Overview

• Regular expression denial of service (ReDoS): ReDoS vulnerabilities occurs when a malicious input
string causes a regular expression to execute slowly or stall, potentially resulting in a denial of service.
These vulnerabilities are a type of Denial of Sevice vulnerabilities

• Server-side request forgery (SSRF): Server-side request forgery (SSRF) vulnerabilities occur when an
attacker is able to manipulate a web application into making unintended requests to internal or external
resources. This can potentially expose sensitive information or enable attacks on other systems.

2.3 Graph.js
In this section we present Graph.js [5] [10]. Graph.js is a novel tool designed statically analyse Node.js

applications using Code Property Graphs (CPGs). We selected Graph.js because it is the leading static analysis
tool for vulnerability detection in Node.js applications.

An illustration of its architecture can be found in Figure 1. The two modules that compose Graph.js are as
follows:

• Graph Constructor Module: This module takes a Node.js application as input and models the program
in a Multiversion Dependency Graph (MDG), a novel type of CPG introduced by the authors of Graph.js.
Then, the graph is forwarded to the Query Execution Engine to identify the vulnerabilities modeled by it.

• Query Execution Engine: Thismodule imports the previously generatedMultiversionDependencyGraph
(MDG) into a Neo4j [11] database and executes queries to detect vulnerabilities. The results of this pro-
cess are captured in a file named taint_summary.json, offering information on identified vulnerabilities,
including their locations within the source files.

Graph.js is designed to identify injection vulnerabilities and prototype pollution vulnerabilities (CWE 1321
[12]). In the particular case of injection vulnerabilities, it is designed to detect the following types:

• OS command injection (CWE-78 [13])

• Abitrary Code Execution (CWE-94 [14])

• Path Traversal (CWE-22 [15])

Before diving into the specifics of each module that constitute Graph.js, we first introduce the running ex-
ample. This example will support our discussion by demonstrating the MDGs generated by Graph.js and how
the available queries work on them.

7

1 const bar = require('./bar.js');
2 function f(x,y){
3 if(x > 0){
4 var a = bar.f("foo",y);
5 eval(a);
6 }
7 else{
8 var b = bar.g(x,0);
9 eval(b);
10 }
11 }
12 module.exports = f;

Figure 2: Main module (left side) and correspoding MDG (right side)

2.3.1 Running Example

Figures 2 and 3 illustrate the example that will used throughout this report. The example consists of two
modules: the Main module and the Bar module. Initially, the Main module includes the Bar module and sub-
sequently calls either function f or function g from the Bar module, depending on whether x is greater than 0.
In the call to f, the Main code provides the constant string "foo" and the variable y. Turning to the call to g,
it supplies the variable x and the numeric value 0. In both conditional branches, the Main module also invokes
eval with the return value of the corresponding function from the Bar module.

As for the the Bar module, it declares the previously mentioned functions. Both functions start by dynam-
ically evaluating the variable a through the use of the eval function. Then, function f returns its b argument,
while function g returns the number 0.

2.3.2 Graph Constructor Module

The Graph Constructor Module is responsible for converting the source code into a graph structure called
MDG. The MDG integrates details about a program’s structure with information regarding the dependencies
between the objects it manipulates. Furthermore, it also stores information on how the objects evolve throughout
the program’s execution. This represents a distinctive innovation introduced by Graph.js when compared to
previous graph-based approaches.

MDGNodes: Exploring the structure ofMultiversionDependencyGraphs (MDGs) using the provided running
example, we find nodes of the following types:

• Tainted Source Nodes: Tainted Source nodes represent any data within the application whose safety
cannot be assured. This data may originate from various parts of the program, with user input being the

8

1 const foo = 4;
2 function f(a,b){
3 eval(a);
4 return b;
5 }
6 function g(a,b){
7 eval(a);
8 return 0;
9 }
10 module.exports = {f, g};

Figure 3: Bar module (left side) and correspoding MDG (right side)

most frequent source. This node type is demontrated by 𝑜10 and 017.

• Unsafe Sinks Nodes: Unsafe Sink nodes represent calls to risky functions and/or APIs. This node type is
demonstrated by 𝑜11 and 𝑜16.

• Value Nodes: Value Nodes represent objects and primitive values generated during the program’s execu-
tion. In both examples, these nodes correspond to the variables used by the program. More concretely, 𝑜1
to 𝑜4 in Figure 2 and 𝑜12 to 𝑜13 in Figure 3, demonstrate these nodes.

• Call Nodes: Call nodes represent the calling of functions within the program. This node type is demon-
strated by 𝑜5 and 𝑜7 in Figure 2 and 𝑜14 in Figure 3.

• Function Nodes: Function nodes represent the functions declared throughout the program. This node
type is demonstrated by 𝑜9 and 𝑜15.

MDG Edges: Although the nodes are important, the crucial information is encoded in the edges, since they
capture the relationships between the objects. The edges are as follows:

• Property Edges: Property edges represent an object’s structure. The edge 𝑛1
𝑝𝑟𝑜𝑝 (𝑝)
−−−−−−→ 𝑛2 indicates that the

object represented by node 𝑛1 has a property named 𝑝 , whose value is represented by 𝑛2.

• New Version: Whenever an object represented by node 𝑛1 is modified, a new value node is generated to

represent that object with the updated property. The edge 𝑛1
𝑁𝑉 (𝑝)
−−−−−→ 𝑛2 signifies that 𝑛2 is the new version

of the object 𝑛1, resulting from an update to the property p.

• Dependency Edges: Dependency edges illustrate relationships involving data between variables, objects,
sources, and sinks. The edge 𝑛1

𝐷𝐸𝑃−−−→ 𝑛2 indicates that the value represented by 𝑛2 is computed using the
value represented by 𝑛1. In Figures 2 and 3, these edges are visually distinguished in green. For instance,
in Figure 2, the edge 𝑜4

𝐷𝐸𝑃−−−→ 𝑜8 signifies that the call to eval (𝑜8) depends on the variable b (𝑜4).

• Parameter Edges: Parameter Edges connect a function node to the nodes representing its parameters.
An edge 𝑛1

𝑃𝐴𝑅𝐴𝑀−−−−−−→ 𝑛2 signifies that the function represented by 𝑛1 has a parameter represented by
𝑛2. In Figures 2 and 3, these edges are visually distinguished in blue. For instance, in Figure 2, the edges
𝑜9

𝑃𝐴𝑅𝐴𝑀−−−−−−→ 𝑜1 and𝑜9
𝑃𝐴𝑅𝐴𝑀−−−−−−→ 𝑜2 signify that the function represented by𝑜9 (function f) has two parameters,

𝑜1 (x) and 𝑜2 (y).

9

Within the context of this work, our primary emphasis is on the dependency edges (DEP) and parameter
edges (PARAM), as the modular constructs have more direct impact on the dependecy part of the analysis. The
dynamics of module usage significantly influence the determination of dependencies. As a result, our attention
is directed towards understanding and thoroughly examining this dimension of the graph construction.

2.3.3 Query Execution Engine

Leveraging all the information encoded within the MDG, the Query Execution Engine can identify vulnerable
paths by executing a series of queries. In the following paragraphs, we focus on explaining only the injection
vulnerability queries since that’s the vulnerability type addressed by this work.

In order to identify injection vulnerabilities, the queries look for a paths from a tainted source to a sensitive
sink that go through DEP and PARAM edges. In the running example, the injection present in the Bar module
(line 3), can be detected by finding the path:

𝑜17
𝑇𝐴𝐼𝑁𝑇−−−−−→ 𝑜15

𝑃𝐴𝑅𝐴𝑀−−−−−−→ 𝑜12
𝐷𝐸𝑃−−−→ 𝑜14

𝐷𝐸𝑃−−−→ 𝑜16

This path is highlighted in the figure in light purple.

2.3.4 Limitations

Although Graph.js can accurately detect injection vulnerabilities, it also has some limitations. Graph.js goes
through eachmodule separately in its analysis. This approach leads to false positives because it treats all function
parameters as potentially unsafe. For instance, consider the call to Bar.f (line 4). This call has the string "foo"
as its first argument. Later, in the Bar module (line 3), that same string is used as the input for the call to eval.
This call, therefore, corresponds to eval("foo"), which is actually safe. However, since Graph.js analyses each
function separately and there is a taint path connecting 𝑜17 to 𝑜16, Graph.js will report the eval call as potentially
vulnerable, which is a false positive vulnerability report.

Another issue regarding the analysis of Graph.js is that it does not model information regarding external
modules. Hence, when dealing with those calls, the analysis has the following options:

• Consider return values always tainted: This strategy introduces false positives by design. Following
this approach, the return value of the call to Bar.g (line 8) is marked as tainted. Consequently, a vul-
nerability is flagged in line 9. However, it is important to note that this identified vulnerability is a false
positive, as the tainted value does not pose an actual security risk or vulnerability in the context of the
program’s intended functionality.

• Consider return values always untainted: This strategy introduces false negatives by design. Follow-
ing this approach, the return value of the call to Bar.f (line 4) is labeled as untainted. Consequently, a
vulnerability in line 5 goes undetected. However, it is important to note that this unidentified vulnerability
is a false negative, as the untainted value may indeed pose an actual security risk or vulnerability within
the intended functionality of the program.

In the specific context of Graph.js, a function’s return value is deemed tainted if any of its arguments are
tainted, representing a combination of the approaches mentioned earlier. However, this approach is susceptible
to false positives, as the return value might not necessarily depend on its arguments. For instance, Graph.js
identifies the return value of Bar.g (line 8) as tainted, based on the fact that the attacker-controlled x variable
is passed into that function call. This particular scenario results in a false positive, as elaborated above.

3 Related Work
Scientific research has sought techniques to enhance the security of Node.js applications. In this section, we

focus on Node.js security (Section 3.1) and vulnerability detection tools for Node.js applications (Section 3.2).

10

3.1 Node.js Security
In Section 2.2, we highlighted that Node.js struggles with its security and that NPM further aggravates those

struggles. In this subsection, we overview two tools for managing third-party package inclusion (Section 3.1.1)
and datasets that can be used to evaluate Node.js vulnerability detection tools (Section 3.1.2). On one hand,
controlling third-party package inclusion enhances Node.js security by aiming to ensure the use of only secure
packages. In the case of insecure packages, this control seeks to ensure that only secure inputs reach these
packages. On the other hand, datasets aid in comparing and evaluating tools, enabling developers to choose the
best tools for evaluating their application.

3.1.1 Managing Third-Party Package Inclusion

Developers often underestimate the security impact of introducing npm packages in their application. These
packages may introduce some of the vulnerabilities explained in Section 2.2. Here, we introduce two tools,
Mininode and Synode, designed to address the inclusion of packages in Node.js applications. These tools rely on
two techniques: reduce the attack surface by reducing the application’s functionalities to theminimumnecessary
and enforce security policies at runtime to ensure the safe usage of the modules.

Mininode: Node.js applications heavily depend on incorporating third-party libraries. To address this depen-
dency, I. Igibek et al. [16] conducted a study to explore how the extensive integration of third-party libraries
could contribute to the attack surface of Node.js applications. The study revealed that, on average, only 6.8% of
the code in analyzed applications was original and 11.3% relied on potentially vulnerable third-party packages.
To address and mitigate the risks of a vast attack surface, the authors proposedMininode. Minode aims at reduc-
ing the attack surface by reducing the application’s functionalities to the minimum necessary for its intended
purpose, thereby mitigating vulnerabilities introduced by unused packages.

Mininode takes a Node.js application as input and initiates the analysis with the generation of its Abstract
Syntax Tree (AST). Subsequently, it constructs a file-level dependency graph by resorting to all available infor-
mation regarding exports and calls to require in the AST. At this stage, AST nodes are marked as either used
or unused, distinguishing between those considered essential and those deemed unnecessary and eligible for
removal. In the final step, nodes identified as unused are pruned from the AST, and the updated AST is then
employed to generate the corresponding code for each module.

Its evaluation demonstrated that Mininode removed vulnerabilities across all categories in 13.8% of cases and
succeeded in completely eliminating all vulnerabilities in 13.65% of cases.

Synode: Similar to the work of I. Igibek et al., C. Staicu et al. [17] also assessed the landscape of utilized APIs.
However, C. Staicu et al. focused on the susceptibility of APIs to injection vulnerabilities. They conducted an
extensive analysis of 235,850 NPM packages with the aim of understanding the vulnerability of these packages.
Their findings shwocased that 15,604 modules employed APIs vulnerable to injection. Furthermore, the research
found that patches to those vulnerabilities take a long time to be developed and sometimes are insufficient,
predominantly relying on regular expression sanitization that fails to cover all possible dangerous inputs.

Given the widespread utilization of these modules in applications, the authors introduced Synode. Synode
employs a combination of static analysis and runtime enforcement of security policies to identify potential in-
jection vulnerabilities and ensure secure usage of vulnerable modules. Using static analysis, the tool derives
user input templates representing possible input values. These templates enable the tool to assess whether an
injection API call site is secure or requires runtime checks to block malicious inputs. If the template cannot be
statically defined, dynamic checks are implemented to prevent potentially harmful inputs from reaching vulner-
able APIs. The authors’ analysis demonstrated that their approach is efficient, incuring sub-millisecond runtime
overhead, and provides robust protection against attacks on vulnerable modules with minimal false positives.

The two tools mentioned in the previous paragraphs focus on protecting the modules used in an application
by removing them. This approach differs from that used by Graph.js since it only identifies vulnerabilities,
leaving the task of removing them to the developer.

11

3.1.2 Benchmarks and Empirical Studies

To facilitate a fair comparison between two distinct static analysis tools, it is imperative to leverage datasets
containing known vulnerabilities. Here, we introduce two datasets that can serve as ground truth for evaluating
static analysis tools.

VulcaN: T. Brito et al. [8], performed an assessment of fully automated JavaScript static analysis tools capable
of seamless integration into the CI/CD pipeline. Their focus was on the examination of server-side JavaScript,
particularly NPM packages.

Prior to assessing the tools, the authors built an annotated dataset of real-world vulnerabilities, which was
nonexistent at the time of publication. To construct this dataset, the authors gathered a snapshot of NPM ad-
visories until the end of June 2021. From the packages included in the snapshot, they excluded those marked
as malicious, those lacking source code, and those that were not in plain JavaScript (i.e, used TypeScript [18]).
The authors were able to manually verify 957 packages by the time of publication, thus these are the packages
included in the dataset. Examples of the vulnerability types present in the dataset are: Path Traversal (CWE-
22 [15]), OS Command Injection (CWE-78 [13]), and Code Injection (CWE-94 [14]).

The assessed tools had to meet the following requisites: rely only on the package’s source code, being open-
source, having a command-line interface and having a security oriented approach. In the end, they were left
with 9 tools, which included CodeQL [9] and ODGen [6].

The evaluation of the selected tools exposed a trade-off between the true positive rate and precision. Specif-
ically, tools that struck a better balance between true positives and precision were those employing graph-based
techniques, namely ODGen and CodeQL. These tools were capable of detecting 31.3% and 16.1% of vulnerabil-
ities, respectively. Furthermore, the combination of the best tools, with CodeQL among them, only identified
53.1% of vulnerabilities in the dataset. According to the authors, the undetected vulnerabilities may stem from
challenges in handling the dynamic nature of JavaScript and due to incomplete sink sets.

SecBench: M. Pradel et al. [7] also constructed dataset of real-world vulnerabilities. The main contribution
from this dataset when compared to the Vulcan dataset is that this dataset is executable. In other words, the
dataset includes inputs that allows to trigger the vulnerabilities.

This dataset selected vulnerable packages from diverse sources, including Snyk, Github Advisories, and
Hunter.dev. Particularly, it focused on specific vulnerability types, namely Prototype Pollution (CWE-1321 [12]),
ReDoS (CWE-1333 [19]), Code Injection (CWE-94 [14]), OS Command Injection (CWE-78 [13]) and Path Traver-
sal (CWE-22 [15]). They prioritized packages that could be successfully installed and that had vulnerabilities that
could be replicated, while excluding those causing compatibility issues with the authors’ setup or marked as un-
stable. To establish fixed versions of the packages, the authors derived either from a commit directly addressing
the vulnerability listed in the advisory or through a detailed analysis of a failed exploit in a newer version. Their
work resulted in a dataset with 600 vulnerable packages.

In comparison to VulcaN, SecBench.js has the benefit of including exploit annotations for all its vulnerabili-
ties. However, it falls short in addressing some common and impactful vulnerability types in Node.js applications,
such as Cross-Site Scripting, which are present in VulcaN.

3.2 Vulnerability Detection in Node.js applications
This subsection will introduce four tools: ODGen, FAST, Nodest and CodeQL. Similarly to Graph.js, these

tools aim to detect vulnerabilities using static analysis methods but employ distinct approaches in their detection
strategies.

ODGen: Prior efforts in the realms of C/C++ and PHP have introduced static analysis techniques that use
graph query approaches to model program information and detect vulnerabilities. However, when applied to
JavaScript, these approaches fall short in capturing essential elements, such as the object’s prototype chain. This
translates into some vulnerabilities being missed by automatic analysis methods.

S. Li et al. [6] addressed this gap by introducing a novel graph structure called the Object Dependency Graph
(ODG). The ODG captures relationships between objects by representing them as nodes in a graph and their

12

interactions as edges. To preserve object lookups and definitions, the ODG integrates the Abstract Syntax Tree
(AST) of the code within the graph. ODG employs a two-phased analysis, facilitating offline graph queries
aimed at detecting a diverse range of vulnerabilities, such as Prototype Pollution (CWE-1321 [12]), OS Command
Injection (CWE-78 [13]) and Path Traversal (CWE-22 [15])

In the paper, the authors indicate how to query the ODG in order to identify vulnerabilities in Node.js appli-
cations. For instance, for injection vulnerabilities, the query revolves around identifying a backward taint-flow
from a sensitive sink to an attacker-controlled source. Conversely, for prototype pollution vulnerabilities, the
query focuses on locating object assignments where the attacker has control over both the property being as-
signed and the corresponding value.

During the evaluation, ODGen demonstrated its capability to effectively identify various vulnerabilities,
including injection and prototype pollution. ODGen’s performance surpassed that of other tools in the field,
outperforming, for example, both JSJoern [20] and JSTap-vul [21], with fewer false positives and false negatives,
showcasing its enhanced accuracy and reliability. More specifically, ODGen exhibited a false positive rate of
32%, whereas JSJoern and JSTap-vul reported false positive rates of 75% and 80%, respectively.

FAST: In their work, M. Kang et al. [22] recognized that abstract interpretation techniques, exemplified by
approaches like ODGen, encounter scalability challenges when dealing with code exceeding a certain threshold
of lines. This scalability issue prevents the identification of many vulnerabilities, as the exploration of paths
increases exponentially. This leads to situations where vulnerable sinks and/or sources remain unexplored.
Additionally, they observed that numerous taint-flow style tools struggle to handle Promise calls due to their
asynchronous nature.

To address these challenges, the authors introduced a novel approach to taint-style analysis named FAST
(Fast Abstract Interpretation for Scalability). FAST employs a combined methodology, integrating a bottom-
up abstract interpretation method to identify pathways from entry points to sink functions, along with a top-
down approach to construct a data-flow graph. The top-down approach not only extracts source-sink paths but
also ensures that only the instructions directly dependent on the sink are analyzed. Therefore, the top-down
approach improves precision by disregarding unrelated instructions. To further enhance accuracy and reduce
false positives, FAST attempts to generate a working exploit for a given path using solvers like Z3. It only
considers a vulnerability exploitable when a successful exploit is generated. This approach helps FAST achieve
a more accurate and reliable identification of exploitable vulnerabilities.

In evaluations against ODGen and CodeQL, using datasets featuring real-world vulnerable Node.js packages
and a dedicated benchmark for scalability assessment, FAST demonstrated superior performance. The tool ex-
hibited a false positive rate of 11.8%, which is better than that presented by ODGen and CodeQL, with rates of
23.3% and 27.8%, respectively. Additionally, it had a false negative rate of 16.6%, surpassing the rates of the other
tools, which were 43.7% and 35.3%, respectively. The type of vulnerabilities that FAST was able to detect include
code injection, command injection, and path traversal vulnerabilities. In terms of scalability, FAST was able to
detect 14 vulnerabilities in its dedicated dataset, while ODGen detected none.

Nodest: Building on a similar motivation as in FAST, which addresses the scalability challenges of static anal-
ysis tools, B. Nielsen et al. [23] introduced a technique aimed at analyzing only the essential modules within a
package. Their approach involves dynamic decision-making at runtime to determine which packages should be
analyzed and which ones can be safely ignored based on feedback. To assess the effectiveness of their approach
in detecting injection vulnerabilities in Node.js applications, they implemented it in a tool called Nodest.

The core concept behind Nodest is the recognition that not all modules require exhaustive analysis. To
accommodate this idea, Nodest dynamically maintains two working sets: MSp (modules to be analyzed) andMSb
(modules not to be analyzed). Utilizing a set of tags and predicates, Nodest assigns tags to each module, enabling
it to determine whether a module should be included in MSp. For example, if the predicate isInTaintFlow(M),
when applied to module M, returns true, M is added to MSp because a taint flow reaches that module. This
predicate indicates that a taint flow reaches module M, therefore it needs to be analyzed.

While modules that will not be analyzed can be known beforehand, Nodest doesn’t necessarily require the
user to initialize that set. Instead, Nodest dynamically populates this set during its analysis. For that reason, it
showcases adaptability and flexibility in identifying which modules are crucial for analysis and which can be

13

safely excluded. Nodest identified 63 vulnerabilities, including 2 previously unknown, across 11 npm packages
during execution.

CodeQL: CodeQL is a static analysis tool used for identifying security vulnerabilities and bugs in software
code. Developed by GitHub, CodeQL employs a semantic code analysis approach, treating code as a database
to query and explore. It allows developers to create queries to detect patterns and potential issues within a
codebase. In particular, CodeQL is capable of detecting some of the most common vulnerabilities present in
Node.js applications, such as command injection, path traversal and prototype pollution. By leveraging CodeQL,
developers can perform in-depth analyses, tracing data flows and uncovering security vulnerabilities, even in
large and complex code repositories.

The tools presented in the previous paragraphs compete with Graph.js. These tools can detect vulnerabilities
in Node.js applications, even in the presence of modules, which Graph.js fails to do it accurately. More concretely,
FAST and Nodest allow for a more scalable and efficient analysis of applications than ODGen, CodeQL and
Graph.js. Additionally, FAST is the only static analysis tool that generates exploits for the vulnerabilities it
detects, reducing the number of reported false positives. However, these tools still exhibit false positives and
false negatives that impact their performance. Moreover, none of these tools can detect all the vulnerabilities
that Graph.js can. For instance, both are unable to detect prototype pollution vulnerabilities.

4 Proposed Solution
To address the limitations discussed in Section 2.3.4, we will develop a new version of Graph.js with support

for reasoning about modules. Specifically, two new strategies, called Complex Graph with Simple Queries and
Simple Graph with Complex Queries, will be developed and incorporated into Graph.js, creating Graph.jsV1. In
this section, we describe the strategies Complex Graph with Simple Queries (Section 4.1) and Simple Graph with
Complex Queries (Section 4.2), while also providing a comparison between both them (Section 4.3).

4.1 Complex Graph with Simple Queries
The idea of the strategy Complex Graph with Simple Queries is to merge the MDGs from various modules

into a single MDG that models the application as a whole. To do this, it is not enough to simply concatenate the
graphs of the different modules into a single graph. It is also necessary to connect the arguments of function
calls to their corresponding parameters and the return values of function calls to the values returned inside the
corresponding functions. More specifically, this strategy will require the creation of the following types of nodes
and edges:

• Return Value Node: Return Value Nodes represent a function’s return value. Figure 4 shows two return
nodes: the return node of Bar.f (𝑜7) and the return node of Bar.g (𝑜10)

• Return Edges: Return edges, RET, connect the node representing a function’s return value and the node

representing the object that captures that value in the caller function. The edge 𝑛1
𝑅𝐸𝑇 (f)
−−−−−−→ 𝑛2 signifies that

the object𝑛2 may correspond to the object𝑛1 returned by function f. In Figure 4, the edge𝑜10
𝑅𝐸𝑇 (Bar.g)
−−−−−−−−−→ 𝑜4

signifies that object 𝑜4 corresponds to the object 𝑜10 returned by function Bar.g.

• Argument Edges: Argument edges, ARG, connect the arguments of a function call in the caller context

with their corresponding parameters in the callee context. The edge 𝑛1
𝐴𝑅𝐺 (f)
−−−−−−→ 𝑛2 signifies that 𝑛2 repre-

sents a formal parameter of f and that that parameter receives the value represented by 𝑛1. In Figure 4,

the edge 𝑜2
𝐴𝑅𝐺 (Bar.f)
−−−−−−−−−−→ 𝑜6 signifies that the the Main module calls Bar.f with 𝑜2 as the formal parameter

𝑜6.

To uncover the vulnerabilities modeled by the updated MDGs, modifications to the queries become impera-
tive. While the queries continue to seek paths from a tainted source node to a sensitive sink through DEP and

14

Figure 4: Complex Graph with Simple Queries technique applied to the graphs in Figures 2 and 3

PARAM edges, they now must also incorporate the new ARG and RET edges. In essence, the queries are de-
signed to trace a path from the tainted source node to the sensitive sink that traverses DEP, PARAM, ARG, and
RET edges. For instance, the detection of the injection vulnerability in the Main.f (line 5) involves executing a
query that finds the path:

𝑜21
𝐷𝐸𝑃−−−→ 𝑜17

𝑃𝐴𝑅𝐴𝑀−−−−−−→ 𝑜2
𝐴𝑅𝐺 (f)
−−−−−−→ 𝑜6

𝐷𝐸𝑃−−−→ 𝑜7
𝑅𝐸𝑇 (f
−−−−−→ 𝑜3

𝐷𝐸𝑃−−−→ 𝑜12
𝐷𝐸𝑃−−−→ 𝑜20.

This path is highlighted in the figure in light purple.

4.2 Simple Graph with Complex Queries
The idea of the strategy Simple Graphwith ComplexQueries is also tomerge theMDGs from variousmodules

into a single MDG that models the application as a whole. Unlike the previous strategy, the graphs of different
modules are not directly connected. Instead, we keep the separation between callers and callees, relying on
queries to establish connections. To ensure that the queries work, function call nodes now contain information
specifying which function in the external module could be called. This is illustrated by the orange boxes below
𝑜11 and 𝑜13 in Figure 5. In addition to annotating call nodes with identifiers of the functions being called, we
expand the graph by introducing the following nodes and edges:

• Return Value Object Node: Return Value Nodes represent a function’s return value. Figure 4 shows two
return nodes: the return node of Bar.f (𝑜7) and the return node of Bar.g (𝑜10). These are the same objects
as those presented in the previous strategy.

• Return Edges: RET edges connect function call nodes and the node representing the object that captures

its return value in the caller function. The edge 𝑛1
𝑅𝐸𝑇 (f)
−−−−−−→ 𝑛2 signifies that the object 𝑛2 represents the

return value of f at the call site 𝑛1. In Figure 5, the edge 𝑜13
𝑅𝐸𝑇 (bar.g)
−−−−−−−−−→ 𝑜4 represents the return value of

Bar.g at the callsite represented by 𝑜13.

• Argument Edges: Argument edges, ARG, connect the objects used as arguments in function calls and

their corresponding function call nodes. The edge 𝑛1
𝐴𝑅𝐺 (f.x)
−−−−−−−−→ 𝑛2 signifies the function represented by

15

𝑛2 (f) has a parameter x and that parameter receives the value represented by 𝑛1. In Figure 5, the edge

𝑜2
𝐴𝑅𝐺 (bar.f.b)
−−−−−−−−−−−→ 𝑜6 signifies that the Mainmodule calls Bar.f (𝑜6), with 𝑜2 as its formal parameter b. Note

that these argument edges are distinct from those in the previous strategy. These edges connect arguments
to call nodes, while the others connect arguments to parameters.

Figure 5: Simple Graph with Complex Queries technique applied to the graphs in Figures 2 and 3

To effectively report the vulnerabilities embedded within the updated MDGs, it becomes imperative to make
modifications to the queries. Specifically, the combination of the following queries is necessary:

• Taint Propagation Query: This query is designed to identify paths from the tainted source node to a
taint sink node that go through DEP, PARAM, ARG, and RET edges. However sequences of argument and

return edges do not necessarily propagate taint. For instance the sequence 𝑛1
𝐴𝑅𝐺 (f.x)
−−−−−−−−→ 𝑛2

𝑅𝐸𝑇 (f)
−−−−−−→ 𝑛3 only

propagates taint from 𝑛1 to 𝑛3 if f’s return value depends on the x parameter. To detect this, we require
the next query to be executed as an auxiliary query

• Parameter-Return Dependency Query: This query aims to determine if the return value is influenced
by the parameter, indicating the propagation of taint from the parameter to the return value. Similar to
the previous query, it follows DEP, PARAM, ARG, and RET edges, but with distinct start and end nodes.
Specifically, it initiates from the node that represents the parameter and concludes at the return value
node. This query may recursively call itself, considering that applications can have nested function calls
with data flows that need to be checked.

The process of identifying the vulnerabilities begins by executing the taint propagation query, on the main
module’s subgraph, which holds the program’s entry point. In graphs without function call nodes referencing
external functions, this initial query suffices for detecting the targeted vulnerabilities. However, when a function
call node referring to an external function is encountered during the first query, the second query must be
executed as a subquery. If the subquery reveals that the return value is not tainted, that taint path is sensitive
but not further explored. Otherwise, the first query resumes, aiming to check if this direct path reaches a sensitive
sink.

For example, detecting the injection vulnerability in the Main module (line 5) involves executing a query
that starts by finding the path:

16

𝑜21
𝐷𝐸𝑃−−−→ 𝑜17

𝑃𝐴𝑅𝐴𝑀−−−−−−→ 𝑜2
𝐴𝑅𝐺 (bar.f.b)
−−−−−−−−−−−→ 𝑜11

𝑅𝐸𝑇 (f
−−−−−→ 𝑜3

𝐷𝐸𝑃−−−→ 𝑜12
𝐷𝐸𝑃−−−→ 𝑜20.

The subquery triggered while identifying the mentioned path is as follows:

𝑜18
𝑃𝐴𝑅𝐴𝑀−−−−−−→ 𝑜6

𝐷𝐸𝑃−−−→ 𝑜7.

Both paths are highlighted in the figure in light purple

4.3 Comparing both Strategies
We will implement both strategies to determine their effectiveness. While they are equivalent in expressive-

ness, their performance may vary. Therefore, it’s crucial to implement and evaluate both to understand their
behavior. The second strategy, with cached results of auxiliary queries, is expected to perform better. Once we
identify a function propagating taint from a parameter to the return value, there’s no need to traverse that path
again. In contrast, the first strategy always seeks complete paths, requires traversing a function’s body each
time it’s encountered, resulting in potential redundancy.

Both strategies present different implementation challenges. In the first strategy, the heavy lifting lies in
graph construction: we need to add numerous connections to weave together the MDGs from various mod-
ules. In the second, the heavy lifting is in query implementation, since the main query must be structured to
accommodate interspersed calls to the auxiliary query (confirming parameter-return taint flows).

5 Evaluation & Planning
In this section, we discuss the evaluation of the solution (Section 5.1) and detail how the work will unfold

throughout the semester (Section 5.2).

5.1 Evaluation
This subsection provides an overview of the selected datasets and their modular features, along with the

tools used to compare with Graph.jsV1 (Section 5.1.1). Furthermore, it also describes the evaluation metrics that
will be employed (Section 5.1.2).

5.1.1 Dataset Characterization

The evaluation involves comparing Graph.jsV1 with Graph.js (the existing version), ODGen, and CodeQL,
using the SecBench and VulcaN datasets. All tools will be run on both datasets. Specifically, Graph.jsV1 will
be run twice, once for the Complex Graph with Simple Queries strategy and another for the Simple Graph
with Complex Queries strategy. However, it is necessary to validate that the datasets demonstrate the modular
features discussed in this work. To this end, we conducted a characterization of the datasets’ modular features,
focusing on four key aspects:

• File Count: corresponds to the number of source files in the package’s directory.

• Exported Functions: corresponds to the number of functions exported from themainmodule of a Node.js
package. We determined the main file by examining the package.json file and by looking for the file speci-
fied in themain attribute. If themain attribute was absent, themain file defaulted to index.js. Subsequently,
we generated the Abstract Syntax Tree (AST) for the package and determined the number of exported
functions by traversing it, counting the number of times that either an assignment to module.exports
or export keyword appeared.

• Maximum Inclusion Depth: corresponds to the maximum level of nested dependencies within a pack-
age. To calculate this metric, we used the Dependency Tree NPM package [24] to create the package’s
dependency graph. Afterwards, we performed a depth-first search (DFS) on the graph to calculate the
inclusion depths, identifying the longest path in the graph. This can be done with a DFS, because the
dependency graph is acyclic.

17

• MaximumCall Depth: corresponds themaximumdepth of function call chainswithin aNode.js package.
To account for calls extending into imported modules, the characterization computed the call depth on a
file-by-file basis while traversing the file dependency tree. This approach was necessary due to the Node.js
ability to export functions with names different from their original declaration in the module. In the file-
by-file analysis, we generated the call graph using the JSCG [25] NPM package. We then calculated the
maximum call depth using a depth-first search (DFS) to determine the longest path in the graph. However,
the call graph might contain loops, since the sequence of calls 𝑎

𝑐𝑎𝑙𝑙𝑠−−−→ 𝑏
𝑐𝑎𝑙𝑙𝑠−−−→ 𝑎 and recursive calls,

introduce circular dependencies. To mitigate this, the Depth-First Search (DFS) algorithm was adjusted
to keep track of the current path it is traversing. Consequently, if a call leads back to a node within the
current path, the DFS ignores that node, preventing this issue.

Figures 6 and 7 display the normalized results using min-max normalization. As indicated by all the plots,
the datasets show similar values across various characteristics, such as the number of exported functions, the
maximum inclusion depth, and the number of files. These values range from 0 to 16 for SecBench and 0 to 20 for
VulcaN in both datasets. However, there is a difference in the maximum call depth, where VulcaN’s call depth
significantly surpasses that of SecBench. This is consistent with our experience with these datasets, where we
observed that VulcaN has more more complex pacackages than SecBench.

In sumarry, the Vulcan and SecBench datasets are suitable datasets for evaluating the techniques we will
develop because they exhibit the modular features addressed by this work. Specifically, their packages are orga-
nized into modules, and these modules are structured across various files. Additionally, these modules interact
with each other through function calls.

Figure 6: Characterization of the SecBench dataset Figure 7: Characterization of the Vulcan dataset

5.1.2 Evaluation Metrics

In order to assess and draw conclusions about the tools’ performance in the datasets, we need to compute
some metrics. More concretely, the following metrics will be computed:

• Recall: Recall is the percentage of actual vulnerabilities correctly identified. It measures a tool’s ability
to capture and correctly flag vulnerabilities among all the vulnerabilities present in the dataset. We can
compute a tool’s recall in a dataset by using the formula bellow.

Recall =
True Positives

True Positives + False Negatives

• Precision: Precision is the percentage of reported vulnerabilities that are indeed true positives, out of the
total number of reported vulnerabilities. It measures the accuracy of the tool in identifying and reporting

18

actual vulnerabilities without generating many false positives. We can compute a tool’s precision in a
dataset by using the formula bellow.

Precision =
True Positives

True Positives + False Positives

• Efficiency: Evaluation is runtime performance of a tool during analysis. It measures the time taken by a
tool to analyze a dataset. We can compute a tool’s efficiency in a dataset by keeping track of the time a
tool takes to evaluate a dataset.

We expect Graph.jsV1 to have better precision than Graph.js, but it may potentially have lower recall. It will
achieve better precision since, with the new strategies for handling modules, it can accurately analyze calls to
external modules. However, these same strategies may result in the failure to detect some vulnerabilities, as we
will conduct a more fine-grained analysis of modules, and there might be cases that escape this reasoning. Ad-
ditionally, we expect Graph.jsV1 with the strategy Simple Graph with Complex Techniques to be more efficient
than Graph.jsV1 with the strategy Complex Graph with Simple Strategies, for the reasons outlined in Section
4.3.

5.2 Planning
The work proposed by this report can be divided in 4 tasks. This subsection starts by describing these tasks.

Then, Table 1 describes how the work will be done throughout the semester. More concretely, the tasks are as
follows:

• Implement ComplexGraphwith Simple Queries Strategy: involvesmakingmodifications to the source
code of Graph.js’ graph constructor module. The goal is to integrate the new strategy into the existing
functionality. Once completed, Graph.js will have the capability to generate the MDGs outlined in Section
4.1.

• Implement Simple GraphwithComplex Queries Strategy: involvesmakingmodifications to the source
code of Graph.js’ graph constructor module to integrate the new strategy into its existing functionality.
Once completed, Graph.js will have the capability to generate the MDGs outlined in Section 4.2.

• Implement the Queries for both strategies: involves creating the new queries necessary to detect the
vulnerabilities modeled by both strategies, as described in Sections 4.1 and 4.2.

• Evaluation of the implementations: involves running both strategies along with the other tools in
the datasets just as described in Section 5.1. Additionally, this task also encompasses computing all the
evaluation metrics necessary.

• Writing of the Thesis: involves writing the thesis detailing all the work that will be done.

Period Work
February - March Implement Complex Graph with Simple Queries Strategy

April - May Implement Simple Graph with Complex Queries Strategy
May - June Implement the queries for both techniques
June - July Evaluation of the implementations

July - September Writing of the thesis

Table 1: Organization of the Work throughout the semester

19

6 Conclusion
In conclusion, this work addressed the challenges and vulnerabilities inherent in Node.js applications. Specif-

ically, our work emphasizes the critical role of theWorldWideWeb in our daily lives and the impact of JavaScript
and Node.js in web development. Despite their advantages, Node.js applications face security issues, introduced
by the language-specific behaviors of JavaScript.

Static analysis provides a viable solution for identifying and mitigating vulnerabilities in Node.js applica-
tions. Graph-based approaches, exemplified by tools like Graph.js, have proven highly effective in this context.
Graph.js is composed by two modules: the Graph Constructor Module, responsible for generating MDGs, and
the Query Execution Engine, tasked with running queries in MDGs to detect vulnerabilities. To the best of our
knowledge, Graph.js stands out as the leading static analysis tool for Node.js vulnerability detection. Graph.js
exhibits fewer false positives and greater efficiency than its closest competitor, ODGen.

However, Graph.js exhibited limitations in modular reasoning, particularly in handling calls to external mod-
ules. This limitation, in particular, leads to an increased number of false positives. To addressed this issue, this
work introduced two strategies designed to enhance Graph.js’ accuracy and diminish the occurrence of false
positives. More concretely, the contributions of this work are as follows:

1. ComplexGraphwith Simple Queries Strategy: involvesmerging the graphs from diversemodules into a
unified graph, establishing connections between nodes in both graphs. The proposal includes introducing
additional nodes and edges to ensure an accurate representation of the source code’s modular features.

2. Simple Graph with Complex Queries Strategy: involves merging graphs from various modules into a
unified representation of the entire application. Similar to the first approach, it suggests introducing new
nodes and edges to correctly model the source code’s modular features. The proposed nodes are consistent
across both strategies, while the edges differ. Unlike the previous strategies, the graphs remain separate,
and the responsibility of connecting them is delegated to the queries. Additionally, function call nodes
now contain information about the specific external module function that could be called, assisting the
queries’ job.

3. Vulnerability DetectionQueries for Both Strategies: involves developing a new set of queries capable of
identifying vulnerabilities represented by the updated graphs. For the Complex Graphwith Simple Queries
strategy, minimal adjustments to existing Graph.js queries are needed. On the other hand, implementing
the queries for the Simple Graph with Complex Queries strategy requires the creation of two entirely new
queries.

The evaluation of the upgraded Graph.js version involved comparing results with competitors ODGen and
CodeQL on SecBench and Vulcan datasets. The anticipated improvement lies in the reduction of false positives,
enhancing the overall reliability of Graph.js. The outcomes of this research aim making Graph.js a more robust
tool tool for static analysis in Node.js applications that can be integrated in the CI/CD pipelines.

FutureWork: In summary, this work offered an enhanced version of Graph.js with improved modular reason-
ing, addressing its limitations and transforming it into amore robust tool for identifying vulnerabilities in Node.js
applications. However, there is still room for further improvement in Graph.js. For instance, this study focuses
only on injection vulnerabilities, but Graph.js likely encounters similar challenges in module usage when applied
to other vulnerabilities, such as prototype pollution. Therefore, it is possible to extend the strategies presented
in this report to account for other vulnerability types.

20

Bibliography
[1] “Node.js,” https://nodejs.org/en, accessed: 2023-10-03.

[2] “Bbc: Highgate wood school closed following cyber attack,” https://www.bbc.com/news/
uk-england-london-66733964, accessed: 2023-10-03.

[3] “Node package manager,” https://www.npmjs.com, accessed: 2023-10-03.

[4] “Npm passes the 1 millionth package milestone! what can we learn?” https://snyk.io/blog/
npm-passes-the-1-millionth-package-milestone-what-can-we-learn/, accessed: 2023-10-03.

[5] Anonymous, “Efficient static vulnerability analysis for javascript with multiversion dependency graphs,”
paper under submission.

[6] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining node.js vulnerabilities via object dependence graph and query,”
in 31st USENIX Security Symposium (USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022, pp.
143–160. [Online]. Available: https://www.usenix.org/conference/usenixsecurity22/presentation/li-song

[7] M. H. M. Bhuiyan, A. S. Parthasarathy, N. Vasilakis, M. Pradel, and C.-A. Staicu, “Secbench.js: An executable
security benchmark suite for server-side javascript,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), 2023, pp. 1059–1070.

[8] T. Brito, M. Ferreira, M. Monteiro, P. Lopes, M. Barros, J. F. Santos, and N. Santos, “Study of javascript static
analysis tools for vulnerability detection in node.js packages,” in IEEE Transactions on Reliability, 2023, pp.
1–16.

[9] “Codeql,” https://github.com/github/codeql, accessed: 2023-10-29.

[10] M. Monteiro, “Explodeq.js: A library of queries to detect injection vulnerabilities in node.js applications,”
Master’s thesis, Instituto Superior Técnico, 2023.

[11] “Cypher language query,” https://neo4j.com, accessed: 2023-10-03.

[12] “CWE-1321: Improperly Controlled Modification of Object Prototype Attributes (’Prototype Pollution’),”
https://cwe.mitre.org/data/definitions/1321.html, The MITRE Corporation.

[13] “CWE-78: Improper Neutralization of Special Elements used in anOSCommand (’OS Command Injection’),”
https://cwe.mitre.org/data/definitions/78.html, The MITRE Corporation.

[14] “CWE-94: Improper Control of Generation of Code (’Code Injection’),” https://cwe.mitre.org/data/
definitions/94.html, The MITRE Corporation.

[15] “CWE-22: Improper Limitation of a Pathname to a Restricted Directory (’PathTraversal’),” https://cwe.
mitre.org/data/definitions/22.html, The MITRE Corporation.

[16] I. Koishybayev and A. Kapravelos, “Mininode: Reducing the Attack Surface of Node.js Applications,” in
Proceedings of the International Symposium on Research in Attacks, Intrusions and Defenses (RAID), Oct.
2020.

[17] C.-A. Staicu, M. Pradel, and B. Livshits, “Synode: Understanding and automatically preventing injection
attacks on node.js,” in Network and Distributed System Security Symposium, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:51951699

[18] “Typescript,” https://www.typescriptlang.org, accessed: 2024-1-9.

[19] “CWE-1333: Inefficient Regular Expression Complexity,” https://cwe.mitre.org/data/definitions/1333.html,
The MITRE Corporation.

[20] “Jsjoern,” https://github.com/malteskoruppa/phpjoern, accessed: 2023-10-29.

21

https://nodejs.org/en
https://www.bbc.com/news/uk-england-london-66733964
https://www.bbc.com/news/uk-england-london-66733964
https://www.npmjs.com
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://www.usenix.org/conference/usenixsecurity22/presentation/li-song
https://github.com/github/codeql
https://neo4j.com
https://cwe.mitre.org/data/definitions/1321.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/22.html
https://api.semanticscholar.org/CorpusID:51951699
https://www.typescriptlang.org
https://cwe.mitre.org/data/definitions/1333.html
https://github.com/malteskoruppa/phpjoern

[21] A. Fass, M. Backes, and B. Stock, “Jstap: A static pre-filter for malicious javascript detection,”
in Proceedings of the 35th Annual Computer Security Applications Conference, ser. ACSAC ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p. 257–269. [Online]. Available:
https://doi.org/10.1145/3359789.3359813

[22] M. Kang, Y. Xu, S. Li, R. Gjomemo, J. Hou, V. N. Venkatakrishnan, and Y. Cao, “Scaling javascript abstract
interpretation to detect and exploit node.js taint-style vulnerability,” in 2023 IEEE Symposium on Security
and Privacy (SP), 2023, pp. 1059–1076.

[23] B. B. Nielsen, B. Hassanshahi, and F. Gauthier, “Nodest: Feedback-driven static analysis of node.js
applications,” in Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p. 455–465. [Online]. Available:
https://doi.org/10.1145/3338906.3338933

[24] “Dependency tree,” https://www.npmjs.com/package/dependency-tree, accessed: 2023-12-03.

[25] “Jscg,” https://www.npmjs.com/package/jscg, accessed: 2023-12-03.

22

https://doi.org/10.1145/3359789.3359813
https://doi.org/10.1145/3338906.3338933
https://www.npmjs.com/package/dependency-tree
https://www.npmjs.com/package/jscg

	1 Introduction
	2 Background
	2.1 Modularity in JavaScript and Node.js
	2.1.1 Modularity in JavaScript
	2.1.2 Modularity in Node.js

	2.2 Node.js Security Model
	2.2.1 Taint-Style Vulnerabilities
	2.2.2 Other types of vulnerabilities

	2.3 Graph.js
	2.3.1 Running Example
	2.3.2 Graph Constructor Module
	2.3.3 Query Execution Engine
	2.3.4 Limitations

	3 Related Work
	3.1 Node.js Security
	3.1.1 Managing Third-Party Package Inclusion
	3.1.2 Benchmarks and Empirical Studies

	3.2 Vulnerability Detection in Node.js applications

	4 Proposed Solution
	4.1 Complex Graph with Simple Queries
	4.2 Simple Graph with Complex Queries
	4.3 Comparing both Strategies

	5 Evaluation & Planning
	5.1 Evaluation
	5.1.1 Dataset Characterization
	5.1.2 Evaluation Metrics

	5.2 Planning

	6 Conclusion
	Bibliography

