
Detecting Multi-file Vulnerabilities Using Code
Property Graphs

Guilherme Gonçalves
INESC-ID

Lisbon, Portugal
guilherme.silva.goncalves@tecnico.ulisboa.pt

José Santos
INESC-ID

Lisbon, Portugal
jose.fragoso@tecnico.ulisboa.pt

Pedro Adão
INESC-ID

Lisbon, Portugal
pedro.adao@tecnico.ulisboa.pt

Abstract—The web is essential to daily life, with JavaScript
being fundamental to web development. Node.js [1] extends
its capabilities beyond browsers, enabling scalable applications.
However, its dynamic nature and the large repository of poten-
tially vulnerable packages in NPM [2] create significant security
risks.

This work focuses on improving the vulnerability detection
capabilities of Graph.js by addressing its shortcomings in inter-
procedural analysis and external module processing, which of-
ten lead to false positives. Our contributions include: (1) the
development of an Extended Multi-version Dependency Graph
(EMDG) that enhances inter-procedural analysis and enables
multi-file reasoning by adding call and return nodes, argument
and return edges, and merging EMDGs from the application’s
modules into a single graph; (2) the creation of three new de-
tection algorithms—Top-Down, Bottom-Up with Pre-processing,
and Bottom-Up Greedy—that effectively identify vulnerabilities
within the graph; and (3) a new attacker-controlled object
definition that uncovers previously missed vulnerabilities.

We evaluated our approach using a combined dataset from
VulcaN [3] and SecBench [4], demonstrating that the Bottom-
Up Greedy approach achieves 82% recall and 85% precision,
resulting in a 15% reduction in false positives compared to
Graph.js. Additionally, testing on a dataset of real-world NPM
packages revealed 83% fewer reported vulnerabilities and an
average speed improvement of 3 seconds. With the new definition,
the number of reported vulnerabilities increase by 30%, yet the
estimated precision remains the same.

Index Terms—Static Analysis, Graph Queries, Vulnerability
Detection, Node.js

I. INTRODUCTION

The web is integral to daily life, with JavaScript play-
ing a key role in web development. Node.js [1] extends
JavaScript’s utility beyond browsers, enabling scalable web
applications through an event-driven architecture and non-
blocking I/O model. However, Node.js has security issues due
to JavaScript’s dynamic nature and NPM’s [2] vast repository
of potentially vulnerable packages.

Manual detection of vulnerabilities is challenging, leading
to the adoption of static analysis tools like Graph.js and
ODGen, which use graph-based approaches. Yet these tools
have limitations. Particularly, Graph.js doesn’t process a file’s
external modules and struggles with inter-procedural analysis,
leading to false positives.

This work aims to enhance Graph.js by improving its
detection capabilities. Specifically, the goals of this work are
as follows:

1. Extended MDGs: We enhanced the Graph Constructor
Module to create an Extended Multi-version Dependency
Graph (EMDG), improving inter-procedural analysis by
introducing call and return nodes, as well as argument and
return edges. The EMDG unifies graphs from multiple
modules into interconnected sub-graphs.

2. New Detection Algorithms: Three new algorithms were
developed: Top-Down, Bottom-Up with Pre-processing,
and Bottom-Up Greedy, each designed to find paths from
sources to sensitive sinks with different graph navigation
methods.

3. Attacker-Controlled Object Definition: To further reduce
false positives, we proposed a new attacker-controlled
object definition, allowing the tool to identify previously
missed vulnerabilities by considering overlooked taint
introduction methods.

4. Evaluation on Combined Datasets: Evaluating on Vul-
caN [3] and SecBench [4], the Bottom-Up approaches
outperformed the Top-Down, with the Bottom-Up Greedy
achieving 82% recall and 85% precision, reporting 15%
fewer false positives than Graph.js and showing improve-
ments over ODGen.

5. Evaluation on Real-World Dataset: Using a dataset
of real-world NPM packages, the Bottom-Up Greedy
approach reported 83% fewer vulnerabilities and was 3
seconds faster on average compared to Graph.js, with
estimated precision and recall of 83% and 81%, respec-
tively. With the new definition, the number of reported
vulnerabilities increase by 30%, yet the estimated preci-
sion remains the same.

This document is organized as follows: Section II covers the
necessary background. Section III details the proposed changes
to the graph generation algorithm and the new detection
algorithms. Section IV evaluates these changes. Section V
reviews related research. Finally, Section VI concludes with a
summary and concluding remarks. We detail all the algorithms
mentioned in this document in Appendix A.

II. OVERVIEW

This section provides the necessary background for under-
standing our work. First, in Section II-A, we overview the
Node.js security model, including some of the most common
vulnerabilities present in Node.js applications. Finally, we



Fig. 1: Graph.js Architecture Overview

introduce Graph.js in Section II-B. Understanding Graph.js
is crucial here, as our work builds upon it to enhance its
functionality and address security concerns.

A. Node.js Security

The Node.js environment, while powerful and flexible, also
introduces various vulnerabilities in applications. This section
presents the Node.js security model, highlighting common
vulnerabilities found in Node.js applications.

1) Taint-Style Vulnerabilities: Taint-style vulnerabilities are
prevalent in Node.js applications, characterized by the flow of
untrusted data (sources) to sensitive functions (sinks).

• Sources: Points where untrusted data enters the system,
such as web forms, request bodies, and module parame-
ters.

• Sinks: Functions that trigger security-sensitive behavior,
like eval, child_process.exec, and fs.readFile.

Injection vulnerabilities are a subset of taint-style vulner-
abilities, where attacker-controlled data is executed by the
application. Examples include:

• Code Injection: Passing untrusted data to eval or
Function, leading to arbitrary code execution.

• OS Command Injection: Influencing OS commands via
child_process.exec or child_process.spawn.

• Path Traversal: Accessing restricted files via
fs.readFile or fs.createReadStream.

2) Other Types of Vulnerabilities: Node.js applications can
also exhibit other common vulnerabilities:

• Prototype Pollution: Altering built-in JavaScript prop-
erties, leading to severe consequences like remote code
execution.

• Cross-Site Request Forgery (CSRF): Trick authenticated
users into executing unwanted actions on a web applica-
tion.

• Denial of Service (DoS): Disrupt a website or service,
making it unavailable to users.

B. Graph.js

In this section, we present Graph.js [5], [6], whose archi-
tecture can be found in Figure 1. First, we present the running

1 const bar = require(’./bar.js’);
2 function f(x,y){
3 if(x > 0){
4 var a = bar.f("foo",y);
5 eval(a);
6 }
7 else{
8 var b = bar.g(x,0);
9 eval(b);

10 }
11 }
12 module.exports = f;

Listing 1: Main module

1 const foo = 4;
2 function f(a,b){
3 eval(a);
4 return b;
5 }
6 function g(a,b){
7 eval(a);
8 return 0;
9 }

10 module.exports = {f, g};

Listing 2: Bar module

example in Section II-B1. Then, we discuss its limitations in
Section II-B2.

1) Running Example: Listing 1 and Listing 2 depict the
running example used in this section. The example involves
two modules: Main and Bar. The Main module includes Bar

and calls either f or g based on whether x is greater than 0.
For f, it passes "foo" and y; for g, it passes x and 0. In both
cases, eval is invoked with the function’s return value. The
Bar module defines f and g, both of which evaluate a using
eval. f returns b, while g returns 0.

2) Limitations: Although Graph.js can accurately detect
vulnerabilities, it also has the following limitations:

• File-by-File Analysis: Graph.js analyzes modules sepa-
rately and assumes all function parameters are unsafe,
leading to false positives. In the running example, when
calling Bar.f with "foo" as the argument a, it results
in eval("foo"), which is safe. However, if the module
is analyzed on its own, this call to eval is incorrectly
flagged as vulnerable because there is a path from the
parameter a to the sink.

• Incorrect Inter-Procedural Analysis: Graph.js marks a
call’s return value as tainted if any argument is tainted,
which can cause false positives. In the running example,
the return value of the call to Bar.g is marked as tainted,
incorrectly flagging a vulnerability. This is a false positive
because the tainted value is 0, which poses no real
security risk.

III. MULTI-FILE VULNERABILITY DETECTION

In this section, we explain the proposed improvements
to Graph.js’s detection capabilities. First, we show how to
build the extended MDGs (EMDGs) in Section III-A. Then,



Fig. 2: Extended MDG example

in Section III-B, we present three methods for detecting
vulnerabilities in the extended MDGs.

A. Multi-File Graph Construction

To address the limitations outlined in Section II-B2, we
propose two main changes to the Graph Constructor module:
adding new nodes and edges to improve inter-procedure anal-
ysis, and implementing a new graph generation algorithm to
manage file dependencies. The following sections will detail
each of these changes.

1) Extended Graph: Figure 2 displays an EMDG. It details
its the nodes and edges and will serve as a reference through-
out this section.

a) EMDG nodes: Starting with its nodes, an EMDG has
the following nodes:

• Tainted Source Nodes (yellow): Represent unsafe data
whose safety cannot be assured, often from user input
(e.g., o10 in Figure 2).

• Unsafe Sink Nodes (yellow): Represent calls to risky
functions/APIs (e.g., o11 in Figure 2).

• Value Nodes (blue): Represent objects and primitive
values generated during execution (e.g., o1, o3, o5).

• Call Nodes (purple): Represent function calls, including
the called function’s identifier (e.g., o2, o4, o6).

• Function Nodes (orange): Represent declared functions
(e.g., o7, o8, o9).

• Return Value Nodes (red):Represent a function’s return
value (e.g., o12 for Bar.g).
b) EMDG edges: Now shifting the focus to the edges,

an EMDG has the following edges:
• Property Edges: Represent an object’s structure. The edge
n1

PROP (p)−−−−−−→ n2 indicates that n1 has a property p, with
value n2. For instance, the code snippet n1 = "p": n2,
creates a node to represent the sub-object p, connecting
it to n1 through a property edge.

• New Version Edges: Represent updates to objects. The
edge n1

NV(p)−−−−→ n2 shows that n2 is a new version of n1

after updating property p. For instance, the code snippet
a.x = 2, creates a new version of a, a’, connecting a
and a’ with a new version edge.

• Dependency Edges (green): Represent data relationships
between nodes. The edge n1

DEP−−→ n2 shows that n2

depends on n1. For instance, in Figure 2, the edge
o6

DEP−−→ o7.
• Parameter Edges: Connect functions to their parameters.

The edge n1
PARAM−−−−→ n2 shows n2 is a parameter of n1.

For instance, in Figure 2, the edge o17
PARAM−−−−→ o1.

• Taint Edges: Link taint sources to functions. The edge
TAINT_SOURCE

TAINT−−−−→ n2 indicates that n2 is poten-
tially controlled by the attacker. For instance, in Figure 2,
the edge o21

TAINT−−−−−→ o17.
• Return Edges: Connect function calls to their return

values. The edge n1
RET(f)−−−−→ n2 shows n2 is the return

value of f at callsite n1. For instance, in Figure 2, the
edge o13

RET(bar.g)−−−−−−−→ o4.
• Argument Edges: Connect function arguments to calls.

The edge n1
ARG(f.x)−−−−−−→ n2 indicates n2 has a parameter

x receiving the value from n1. For instance, in Figure 2,
the edge o2

ARG(bar.f.b)−−−−−−−−−→ o11.

2) Multi-file Algorithm: We enhanced inter-procedural
analysis with new nodes and edges, but Graph.js still struggles
with file dependencies. To address this, we introduce the
Graph Generation Algorithm in Algorithm 1. This algorithm
requires two inputs: a Directed Acyclic Graph (DAG) of
module dependencies and a summary of the functions exported
by each module.

We generate the DAG using the Dependency Tree NPM
package, which analyzes all dependencies (regardless of being
used or not) starting from a specified entry point, excluding
Node.js built-in modules.

To summarize exported functions, we track assignments
to module.exports, mapping each exported function to its
original name. If an object is exported, we recursively map its
function properties. This process is detailed in Algorithms 4
and 5.

The algorithm works by first generating the module depen-
dency DAG, then processing it from sinks (modules without
dependencies) to sources (modules without dependents). For
each module, we build its EMDG and export function sum-
mary. When a module calls an external function, we integrate
its graph using these summaries, resulting in a unified EMDG
for the entire application.

Figure 2 shows a multi-file EMDG with two modules: Bar
and Main. To create it, we first generate the dependency DAG:
Main −→ Bar. We start by processing the Bar module since it
has no dependencies, generating its EMDG and summarizing
its exports. Then, we process the Main module. When a call
to Bar is found in Main, we use the previously generated
summary for Bar to include the calling function’s graph.



Traversal Description Pattern

TaintedPathse
Sequence of 0 or more edges connecting node s to node e. If e is not specified,
return all distinct paths that start in s. If s==e, return e. s

(DEP/NV/PROP/ARG)+−−−−−−−−−−−−−−−−−−−→ e

Callargf,p

Match the argument edge connecting arg to a call node representing a call
to function f on the parameter p, returning both f and p. If f and p are not
specified, match all call nodes connected to arg and return all distinct pairs
of functions and parameters where n is used as an argument.

arg
ARG(p)−−−−−−→ call(f)

Parampf
Matches the node representing function f and returns the node representing its
parameter p. -

TABLE I: Base graph traversals

Name Path

Top-Down Taint Query (TaintPathstartsink/ret) ∪ (TaintPathstartarg ◦ Callarg)
Bottom-Up Taint Query Parampf ◦ TaintPathpsink

Call Graph Query Parampf ◦ TaintPathparg ◦ Callargg,q

TABLE II: Algorithms’ Queries

B. Vulnerability Detection

With the changes described earlier, Graph.js can now ac-
curately model vulnerabilities. To detect these vulnerabilities,
we can use either a Top-Down or Bottom-Up approach to
trace paths from the Taint Source node to a sensitive sink.
Section III-B1 covers the Top-Down approach, while Sec-
tion III-B2 details the Bottom-Up approach. Finally, Sec-
tion III-B3 discusses the soundness of these methods.

1) Top-Down Vulnerability Detection: In this section, we
explain how to detect vulnerabilities in EMDGs using a Top-
Down approach. This approach traces call chains from callers
to callees, starting at the Taint Source node and moving
towards sensitive sinks. To implement this, we use the Top-
Down Taint Query and Algorithm 8.

a) Top-Down Taint-Query: The Top-Down Taint Query,
shown in Table II, identifies paths from a starting node (e.g.,
a Taint Source node) to a sensitive sink, a Return node, or
a function call. It uses two basic traversals from Table I:
TaintPath and Call. The TaintPath traversal connects the start
node (s) to a sink or return node (end). The Call traversal finds
calls to functions (f ) on a parameter (p) and the corresponding
argument (arg).

To find taint paths that reach a sensitive sink or a Return
node, we simply use the TaintPath traversal. Additionally, we
find taint paths that reach function calls by combining the
TaintPath with the Call traversal (which finds function calls,
its arguments and corresponding parameters). For example, in
Figure 2, this query returns the green path, amongst others.

b) Top-Down Algorithm: The Top-Down Algorithm (Al-
gorithm 8) connects call chains from callers to callees, behav-
ing differently based on where the query stops. If it stops at
a call node, it executes a Top-Down Taint query on the called
function’s sub-graph. If it stops at a return node or sensitive
sink, it saves the path for reporting. The algorithm uses two
lists: results (storing identified vulnerable paths) and work list
(holding incomplete paths). Initially, results is empty, and
work list starts with the Taint Source node. For example, to
detect the vulnerability in Figure 2, we follow these steps:

1. We start by calling Find_Taint_Paths with results

as an empty list and work_list initialized with [[o8]],
where o8 is the Taint Source node.

2. The algorithm pops the first path from work_list. Since
the last node is TAINT_SOURCE, it runs the Top-Down
Taint query, identifying the green path and updating
work_list to [[o10, o7, o1, o2]] (lines 30-34).

3. It pops the first path from work_list. The last node
(o2) is a call node, so func is bar.f and param is o3. It
then recursively calls Find_Taint_Paths([],[[o3]])
(lines 12-16):

3.1. The only path in work_list ends at o3, a parameter.
Thus, it executes the Top-Down Taint query, iden-
tifying the yellow path and updating work_list to
[[o3,o4]] (lines 30-34).

3.2. The path in work_list ends at a call
node (o4). Therefore, it recursively calls
Find_Taint_Paths([],[[o5]]) (lines 12-16):

3.2.1. The only path in work_list ends at o5, a pa-
rameter. Consequently, it executes the Top-Down
Taint query, identifying the red path and updating
work_list to [[o5,o6,o11]] (lines 30-34).

3.2.2. The path in work_list ends at a sensitive sink
(o11). Thus, it adds this path to results and
returns results, as there are no paths left to
analyze (lines 8-10).

3.3. It append the current path with the returned
path and adds it to results, updating it to
[[o3,o4,o5,o6,o11]] (lines 17-28). It returns
results, as there are no paths left to analyze (lines
1 and 2).

4. The algorithm now appends the paths (lines 17-28).
Finally, it returns the results list with the vulnerable
path [[o10, o7, o1, o2,o3,o4,o5,o6,o11]], as there
are no paths left to analyze (lines 1 and 2).

2) Bottom-Up Vulnerability Detection: Unlike the Top-
Down approach, the Bottom-Up approach traces call chains
in reverse, starting from the sinks and working back to the



1 function g(x) {
2 let o = {}
3 o.foo = 33;
4 f(x, o);
5 eval(o.foo);
6 }
7 function f(y,z){
8 z.foo = y;
9 }

10 module.exports = g

Listing 3: Overlooked Vulnerability Example

Fig. 3: Corresponding MDG of Listing 3

parameters of exported functions (i.e., functions connected
to the Taint Source node). In this section, we present two
algorithms that use this approach, along with the queries that
support their execution.

a) Bottom-Up Queries: The Bottom-Up algorithms dis-
cussed in the following sections require the following queries:

• Bottom-Up Taint Query: The Bottom-Up Taint query
traces data flows from a sink to its origin. First, we use
the Param traversal to identify a function’s parameter.
Then, we chain it with the TaintPath traversal, to trace
taint flows from this parameter to a sensitive sink. For
example, in Figure 2, this query returns the red path.

• Call Graph Query: The Call Graph query connects callers
to callees. This query first uses Param traversal to identify
a function parameter, then chains the TaintPath and the
Call traversals to follow this parameter to a function
cal, identifying the called function’s parameter (q). For
example, in Figure 2, this query that o3 is an argument
of the parameter b of Bar’s function g

b) Bottom-Up Algorithm with Pre-Processing: The
Bottom-Up algorithm with Pre-Processing first computes the
transposed call graph using the Call Graph query. Next, it uses
the Bottom-Up Taint query to identify potential vulnerabilities
by tracing objects that reach a sink. Finally, it traverses the
call chains in a bottom-up manner (from sinks to sources) to
confirm these vulnerabilities using the transposed call graph
and Algorithm 7. For instance, we detect the vulnerability in
Figure 2 by following these steps:

1. We first construct the transpose call graph (CGT), using
the Call Graph Query. CGT becomes o5 −→ o3 −→ o1

2. We then run the Bottom-Up Taint query to identify the
red path. Thus, we call Confirm_Vuln(o5, CGT), where
o5 represents the function bar.g’s parameter b and that
parameter reaches a sensitive sink.

3. The algorithm initializes the stack list with [o5] (line
1). It pops o5 (parameter b of bar.g). Since b is not a
parameter of an exported function, it adds the parameters
that reach it from the transposed call graph. Consequently,

it updates stack to [o3], where o3 represents bar.f’s
parameter a (lines 3-8).

4. It repeats for a (o3). It updates stack to [o1], where o1
represents main.f’s parameter x (lines 3-8).

5. Since x (o1) is a parameter of the exported function
main.f, the algorithm reports the vulnerability and ends
its execution (line 5).
c) Bottom-Up Greedy Algorithm: The Bottom-Up

Greedy algorithm confirms vulnerabilities by connecting only
the necessary paths, caching them to avoid repetition. We start
by identifying parameters that reach a sink using the Bottom-
Up Taint query. Then, we use Algorithm 6 to traverse the call
chains in a bottom-up manner (from sinks to sources) and
confirm the vulnerability. The Call Graph query builds the
transpose call graph as needed. To detect a vulnerability in
the graph of Figure 2, follow these steps:

1. We start by running the Bottom-Up Taint query to find the
red path in the graph. Then, we call Confirm_Vuln(o9,
o5), where o9 represents bar.g and o5 represents its
parameter b (which reaches a sensitive sink).

2. Since o9 (bar.g) is not exported, the algorithm uses
the Call Graph query to identify parameters reaching
o5. This yields the yellow path. Consequently, it calls
Confirm_Vuln(o8, o3), where o8 represents bar.f and
o3 represents its parameter a (lines 4-7).

3. It repeats for o8 (bar.f) and o3 (its parameter a), finding
the green path. Therefore, it calls Confirm_Vuln(o7,
o1), where o7 represents main.f and o1 represents its
parameter x (lines 4-7).

4. Finally, it reports the vulnerability since o7 (main.f) is
exported, and ends its execution (lines 1-2).

3) Soudness Issues: The algorithms discussed earlier detect
vulnerabilities effectively with minimal false positives but are
not sound, as they miss certain vulnerabilities. This section
outlines how to make vulnerability detection as close to sound
as possible.

a) Motivating Example: Listing 3 shows a scenario
where our analysis fails to detect a vulnerability. Function g,
which is exported, creates an object o with foo set to 33, and



Dataset Total Excluded Manually Added Considered
Unavailable Incorrect Annotations Duplicated Out-of-Scope

VulcaN 236 10 7 0 0 59 278
SecBench 601 10 71 38 98 150 534

Total 837 20 78 38 98 209 812

TABLE III: Summary of the vulnerabilities considered in each dataset

calls function f with x and o. Inside f, y assigns its value to
z.foo, thus modifying o.foo to x’s value. Function g then
calls eval(o.foo).

The vulnerability arises from eval(o.foo) in g. Since f

sets z.foo (i.e., o.foo) to y (which equals x), an attacker
can manipulate x to control o.foo, leading to code injection.
The analysis fails to link the assignment z.foo = y in f with
eval(o.foo) in g, missing the taint propagation from x to
o.foo through f.

b) Unsound Attacker-Controlled Object Definition: As
shown in the previous section, earlier algorithms fail to detect
the vulnerability in the example because they rely on the
definition of an attacker-controlled object in Algorithm 3. This
definition states that an attacker controls the objects that are:

• Directly connected to parameters of exported functions,
through new version, dependency or property edges (line
3).

• Reachable from parameters of exported functions through
function calls (lines 7-8).

However, this definition fails in the example shown in
Figure 3, where the parameter x of function g (o2) does not
have a direct or indirect path to o.foo (o4), despite taint
propagation through the call to f(o,x).

c) New Attacker-Controlled Object Definition: To detect
vulnerabilities in the motivating example from Listing 3, we
propose replacing the function Reaches with Reaches2.0
(Algorithm 2) in Algorithm 3. In Reaches2.0, n1 reaches
n2 if they are directly or indirectly connected, or if taint
propagation occurs within a function call.

In the example, the parameter x of function g (o2) taints
o.foo (o4). In the call to Reaches2.0(o2, o4), line 1
of the algorithm is not satisfied (i.e, they are not directly
connected), but line 2 holds with the following setup: o2 as
n1 and n1’, o4 as n2, o3 as n2’, y as parameter p (node o6),
and z as parameter q (node o7). Based on this, we verify the
following conditions:

1. Reaches2.0(n2’,n2) (line 3): We verify this condi-
tion because node o3 (variable o’) connects to o4 (o.foo)
through a property edge (blue path in the graph).

2. n2’ ARG(q)−−−−→call (line 4): We verify this condition be-
cause node o3 (n2’) connects to the call to f (o5) (purple
path in the graph).

3. Reaches2.0(n1,n1’) (line 5): We verify this condi-
tion because o2 corresponds to both n1 and n1’.

4. n1’ ARG(p)−−−−→call (line 6): We verify this condition be-
cause node o2 (n1’) connects to the same call node found
in 2. (o5) (orange path in the graph).

5. Reaches2.0(node(q),q’) (line 7): We verify this
condition because node o7, representing the variable z,
connects to o9 through through new version and property
edges (green path in the graph).

6. Reaches2.0(node(p),q’) (line 8): We verify this
condition because node o6, representing the variable y,
connects to o9 (q’) through dependency edges (red path
in the graph).

7. PropsTraversed(n2’,n2) ==
PropsTraversed(node(q),q’) (line 9): We
verify this condition because the paths from n2’ to n2

(blue path) and from node(q) to q’ (green path) follow
the same sequence of property edges.

Consequently, this analysis flags o4 as tainted by o2 (the
parameter x). Since x is a parameter of the exported function
g, we report the vulnerability.

IV. EVALUATION

In this section, we evaluate the effectiveness of our solu-
tion. Specifically, we aim to answer the following research
questions:

• RQ1: Which of our three proposed algorithms is most
effective for vulnerability detection?

• RQ2: How much does our best algorithm improve
detection over state-of-the-art tools?

• RQ3: What is the impact of our new attacker-controlled
object definition on the detection?

A. Experimental Setup

To address our research questions, we need two datasets:
• Collected Dataset: Consists of 32,137 popular real-world

NPM packages retrieved from the NPM repository in
September 2023. A package is considered popular if it
had over 2,000 weekly downloads, according to Snyk’s
guidelines.

• Combined Dataset (VulcaN + SecBench): A ground truth
dataset combining vulnerabilities from the VulcaN [3] and
SecBench [4] datasets. We identified additional vulnera-
bilities and exploits, increasing the total to 812 vulnera-
bilities. The vulnerabilities picked from each dataset are
summarise in Table III and the following:
– VulcaN dataset: Includes 957 npm package versions

with vulnerabilities like Path Traversal (CWE-22),



CWE Top-Down Bottom-Up Pre-Processing Bottom-Up Greedy
Recall Precision F1 Recall Precision F1 Recall Precision F1

CWE-22 0.95 0.84 0.89 0.97 0.87 0.92 0.95 0.86 0.90
CWE-78 0.94 0.95 0.94 0.93 0.97 0.95 0.94 0.95 0.94
CWE-94 0.77 0.80 0.78 0.87 0.84 0.85 0.77 0.82 0.79

CWE-1321 0.46 0.65 0.54 0.54 0.70 0.61 0.56 0.70 0.62

Total 0.80 0.84 0.82 0.82 0.84 0.83 0.82 0.85 0.84

TABLE IV: Detection results in the Combined dataset

Fig. 4: Vulnerable packages reported in the Collected dataset

OS Command Injection (CWE-78), and Code Injec-
tion (CWE-94). We selected 174 packages containing
Graph.js-targeted vulnerabilities, totaling 236 vulnera-
bilities. Excluded 17 due to incorrect annotations or
external package issues.

– SecBench dataset: Contains 600 vulnerable packages,
including Regular Expression Denial of Service (CWE-
1333). Excluded 217 vulnerabilities: 98 out-of-scope
ReDoS, 71 incorrectly annotated, 38 already in Vul-
caN, and others unavailable or in TypeScript. Resulted
in 384 vulnerabilities.

The evaluation also includes a comparison between the
current version of Graph.js and ODGen, selected for its
similar detection approach and favorable trade-off between
effectiveness and precision as identified by Brito et al. [3]. The
testbed consisted of a single 64-bit Ubuntu 22.04.3 server with
64GB of RAM and 2x Intel(R) Xeon(R) Gold 5320 2.2GHz
CPUs, with a total analysis timeout set to five minutes.

B. RQ1: Which of Our Three Proposed Algorithms Is Most
Effective for Vulnerability Detection?

To address this research question, we evaluated all algo-
rithms against every package in the Combined dataset. A
False Positive is any vulnerability report not annotated in the
dataset, and a True Positive matches the annotations. Precision
is computed as TP/(TP + FP), recall as TP/(TP + FN), and
the F1-score as (2 × Precision × Recall)/(Precision + Recall).
The results are summarised in Table IV. Figure 4 shows that
the number of vulnerabilities by each algorithm.

The Greedy Bottom-Up algorithm achieved the best bal-
ance with 82% recall and 85% precision. The Bottom-Up
with pre-processing followed closely with 82% recall and
84% precision. The Top-Down algorithm had 80% recall and
84% precision, demonstrating its effectiveness despite slightly
lower recall.

a) False Positive and Negative Analysis: Despite good
precision and recall, all algorithms suffer from false positives
and negatives. False positives occur due to incorrect labeling
of the require function as a sink, lack of detailed insights
into Node.js modules, and incorrect flags for recursive object
assignments in prototype pollution. False negatives arise from
incomplete support for JavaScript features like arguments

and this keywords, and prototype pollution patterns involving
third-party NPM packages and sources using the arguments

keyword.

C. RQ2: How Much Does Our Best Algorithm Improve De-
tection Over State-of-the-Art Tools?

To address this research question, we evaluated Graph.js and
ODGen on the Combined dataset, using the same methodology
as before. Additionally, we ran the Bottom-Up Greedy algo-
rithm on 5003 packages flagged as vulnerable by Graph.js,
comparing the number of reported vulnerabilities and average
analysis time. We did this, because we expect the number of
reported vulnerabilities to decrease significantly in this dataset.
On the Collected dataset, Graph.js analyzed packages file-
by-file, while Bottom-Up Greedy analyzed them file-by-file
and by entry points in the main attribute of package.json or



CWE Total ODGen Bottom-Up Greedy
TP FP Recall Precision F1 TP FP Recall Precision F1

CWE-22 244 131 8 0.54 0.94 0.69 231 38 0.95 0.86 0.90
CWE-78 269 151 29 0.56 0.84 0.67 254 13 0.94 0.95 0.94
CWE-94 71 24 113 0.34 0.18 0.24 55 12 0.77 0.82 0.79

CWE-1321 228 37 21 0.16 0.64 0.26 127 57 0.56 0.70 0.62
Total 812 343 171 0.42 0.67 0.52 667 120 0.82 0.85 0.84

TABLE V: Comparison of ODGen and Bottom-Up greedy approach

CWE Total Graph.js Bottom-Up Greedy
TP FP Recall Precision F1 TP FP Recall Precision F1

CWE-22 244 235 47 0.96 0.83 0.89 231 38 0.95 0.86 0.90
CWE-78 269 255 13 0.95 0.95 0.95 254 13 0.94 0.95 0.94
CWE-94 71 61 21 0.86 0.74 0.80 55 12 0.77 0.82 0.79

CWE-1321 228 132 60 0.58 0.63 0.63 127 57 0.56 0.70 0.62
Total 812 683 141 0.83 0.83 0.83 667 120 0.82 0.85 0.84

TABLE VI: Comparison of Graph.js and Bottom-Up greedy approach

Tool Vulnerabilities Vulnerable Packages Avg Analysis Time

Graph.js 14186 5003 15.110s
Bottom-Up Greedy (file-by-file) 13894 4571 15.799s
Bottom-Up Greedy (multi-file) 2327 1255 12.323s

TABLE VII: Results of the evaluation on the Collected dataset

defaulting to index.js. We did not run ODGen on this dataset
due to its long runtime.

a) Comparison with ODGen: Table V shows that the
Bottom-Up Greedy algorithm improved recall by 40% and
precision by 18% compared to ODGen, with 30% fewer false
positives.

b) Comparison with Graph.js: Table VI shows that the
Bottom-Up Greedy algorithm improves precision by 2% and
reduces false positives by 15% compared to Graph.js, though
it has a 1% decrease in recall. Additionally, as detailed in
Table VII, the Bottom-Up Greedy algorithm reduced reported
vulnerabilities in the Collected dataset by about 300 in file-
by-file analysis and by 83% in multi-file analysis. It also per-
formed 3 seconds faster on average, highlighting the benefits
of combining inter-procedural queries with multi-file analysis.

c) Analysis of Collected Dataset Vulnerabilities: To en-
sure that the reduction in reported vulnerabilities wasn’t due
to missed true positives, we randomly sampled and manually
reviewed 40 vulnerabilities detected uniquely by each method:
Graph.js, file-by-file, and the multi-file approach. As depicted
in Figure 5, the vulnerabilities identified by the multi-file
approach are a subset of those found by the file-by-file method,
which in turn are a subset of Graph.js results. Any true
positives missed by the inner methods were considered false
negatives. Based on this, we estimated the Recall, Precision,
and F1-score for each method, as shown in Table IX. Since
we are treating Graph.js as our ground truth, we assumed its
recall to be 1 (the highest possible recall) in order compute
its F1-score.

Our analysis revealed that the multi-file approach signifi-
cantly improved precision from 34% in Graph.js to 83%, while
maintaining a strong recall of 81%. Thus, the reduction of the

reported vulnerabilities was not due to sacrificing recall.

D. RQ3: What is the impact of our new attacker-controlled
object definition on the detection?

To address this research question, we applied the Bottom-
Up Greedy algorithm with our new attacker-controlled object
definition to all packages in the Collected dataset, identifying
entry points as before. The results are summarise in Table X.

As Table X hints the number of reported vulnerabilities
increased by about 30%, and the average package analysis
time increased by approximately 1.8 seconds due to running
additional queries.

a) Analysis of the Reported Vulnerabilities:: To confirm
that the increase in reported vulnerabilities wasn’t just due to
false positives, we randomly selected and manually reviewed
120 newly reported vulnerabilities. Of these, 100 (83%) were
true positives, and 20 (17%) were false positives. Based on
this, we estimate that out of the 690 newly reported vulnerabil-
ities, 575 are true positives and 115 are false positives. Using
the previously estimated precision of 83%, the prior analysis
had 1931 true positives and 396 false positives, which are a
subset of the vulnerabilities detected using the new definition.
This brings the total to 2506 true positives and 511 false
positives, maintaining the same precision of 83%. Thus, we
detected more vulnerabilities without sacrificing precision.

V. RELATED WORK

Scientific research aims to enhance Node.js application
security. This section introduces four static analysis tools
for detecting vulnerabilities in Node.js applications: ODGen,
FAST, Nodest, and CodeQL.



Fig. 5: Vulnerable packages reported in the Collected dataset

CWE Graph.js File-by-File Multi-file Total TP
TP FP TP FP TP FP

CWE-22 1 9 0 10 9 1 10
CWE-78 1 9 1 9 9 1 11
CWE-94 0 10 1 9 8 2 9

CWE-1321 1 9 3 7 7 3 11

Total 3 37 5 35 33 7 41

TABLE VIII: Sampling results in the collected dataset

CWE Graph.js File-by-File Multi-File
Recall Precision F1 Recall Precision F1 Recall Precision F1

CWE-22 1 0.33 0.50 0.90 0.45 0.6 0.90 0.90 0.90
CWE-78 1 0.37 0.53 0.91 0.50 0.65 0.82 0.90 0.86
CWE-94 1 0.30 0.46 1 0.45 0.62 0.89 0.80 0.84

CWE-1321 1 0.37 0.54 0.91 0.50 0.65 0.64 0.70 0.67

Total 1 0.34 0.51 0.93 0.48 0.63 0.81 0.83 0.82

TABLE IX: Sample detection metrics in the collected dataset

a) ODGen: ODGen, developed by S. Li et al., uses a
novel graph structure called the Object Dependency Graph
(ODG) to capture object relationships in JavaScript, addressing
shortcomings in previous methods. ODG integrates the Ab-
stract Syntax Tree (AST) and employs a two-phased analysis
for offline graph queries to detect vulnerabilities such as Pro-
totype Pollution, OS Command Injection, and Path Traversal.
ODGen outperforms JSJoern [7] and JSTap-vul [8] with fewer
false positives (32%) and negatives, showcasing its enhanced
accuracy.

b) FAST: M. Kang et al. [9] introduced FAST to tackle
scalability issues in abstract interpretation tools like ODGen.
FAST combines bottom-up and top-down approaches to con-
struct a data-flow graph, analyzing only instructions directly
dependent on the sink. It uses solvers like Z3 to generate
exploits, improving accuracy and reducing false positives.
FAST outperformed ODGen and CodeQL with lower false
positive (11.8%) and negative (16.6%) rates, demonstrating
superior scalability and vulnerability detection, including code
and command injection, and path traversal.

c) Nodest: B. Nielsen et al. [10] developed Nodest to
analyze essential modules within a package dynamically. It
uses runtime feedback to decide which modules to analyze,
maintaining two sets: MSp (modules to be analyzed) and MSb

(modules not to be analyzed). Nodest identified 63 vulner-
abilities, including two previously unknown ones, across 11
npm packages, highlighting its adaptability and effectiveness
in detecting injection vulnerabilities.

d) CodeQL: Developed by GitHub, CodeQL [11] uses
semantic code analysis, treating code as a database to query
for patterns and potential issues. It can detect common Node.js
vulnerabilities like command injection, path traversal, and
prototype pollution. CodeQL allows for in-depth analysis of
data flows and security vulnerabilities in large codebases.

These tools compete with Graph.js, which struggles with
module detection. FAST and Nodest offer more scalable
and efficient analysis than ODGen, CodeQL, and Graph.js.
FAST uniquely generates exploits for detected vulnerabilities,
reducing false positives. However, all tools still have false
positives and negatives, and none detect all vulnerabilities that
Graph.js can, such as prototype pollution, which FAST and
Nodest miss.

VI. CONCLUSIONS

In this work, we addressed significant limitations in the
vulnerability detection capabilities of Graph.js, particularly
in inter-procedural analysis and handling of external mod-
ules. By introducing the Extended Multi-version Dependency



Tool Vulnerabilities Avg Analysis Time

Bottom-Up Greedy (unsound defintion) 2327 12.323s
Bottom-Up Greedy (new defintion) 3017 14.121s

TABLE X: Results of the evaluation on the new definition on the Collected dataset

Graph (EMDG) and developing three new detection algorithms
(Top-Down, Bottom-Up with Pre-Processing and Bottom-Up
Greedy), we enhanced the tool’s ability to accurately identify
vulnerabilities within Node.js applications. Additionally, our
new attacker-controlled object helps the tool to detect vulner-
abilities that it did not in the past.

Our evaluations on the Combined datasets (which includes
the VulcaN and SecBench datasets) demonstrated that the
Bottom-Up Greedy approach achieved a recall of 82% re-
call and 85% precision, reporting 15% fewer false positives
compared to Graph.js. Furthermore, testing on a dataset of
real-world NPM packages (the Collected dataset) revealed
that the Bottom-Up Greedy approach reported 83% fewer
vulnerabilities and improved analysis speed by an average of
3 seconds, with estimated precision and recall of 83% and
81%, respectively. Importantly, the introduction of the new
attacker-controlled object definition resulted in an increase
of the number of reported vulnerabilities, yet the estimated
precision remains the same.

These results indicate that our modifications effectively
reduce the number of reported false positives. Moreover, the
new definition also allows the tool to detect vulnerabilities that
it previously overlooked. Consequently, we have enhanced the
tool’s detection capabilities.

REFERENCES

[1] “Node.js,” https://nodejs.org/en, 2023, accessed: 2023-10-03.
[2] “Node package manager,” https://www.npmjs.com, 2023, accessed:

2023-10-03.
[3] T. Brito, M. Ferreira, M. Monteiro, P. Lopes, M. Barros, J. F. Santos,

and N. Santos, “Study of javascript static analysis tools for vulnerability
detection in node.js packages,” in IEEE Transactions on Reliability,
2023, pp. 1–16.

[4] M. H. M. Bhuiyan, A. S. Parthasarathy, N. Vasilakis, M. Pradel, and
C.-A. Staicu, “Secbench.js: An executable security benchmark suite for
server-side javascript,” in 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE), 2023, pp. 1059–1070.

[5] M. Ferreira, M. Monteiro, T. Brito, M. E. Coimbra, N. Santos,
L. Jia, and J. F. Santos, “Efficient static vulnerability analysis for
javascript with multiversion dependency graphs,” Proc. ACM Program.
Lang., vol. 8, no. PLDI, p. 25, June 2024. [Online]. Available:
https://doi.org/10.1145/3656394

[6] M. Monteiro, “Explodeq.js: A library of queries to detect injection
vulnerabilities in node.js applications,” Master’s thesis, Instituto Superior
Técnico, 2023.

[7] “Jsjoern,” https://github.com/malteskoruppa/phpjoern, 2024, accessed:
2023-10-29.

[8] A. Fass, M. Backes, and B. Stock, “Jstap: A static pre-filter for
malicious javascript detection,” in Proceedings of the 35th Annual
Computer Security Applications Conference, ser. ACSAC ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
257–269. [Online]. Available: https://doi.org/10.1145/3359789.3359813

[9] M. Kang, Y. Xu, S. Li, R. Gjomemo, J. Hou, V. N. Venkatakrishnan, and
Y. Cao, “Scaling javascript abstract interpretation to detect and exploit
node.js taint-style vulnerability,” in 2023 IEEE Symposium on Security
and Privacy (SP), 2023, pp. 1059–1076.

[10] B. B. Nielsen, B. Hassanshahi, and F. Gauthier, “Nodest: Feedback-
driven static analysis of node.js applications,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 455–465. [Online].
Available: https://doi.org/10.1145/3338906.3338933

[11] “Codeql,” https://github.com/github/codeql, 2023, accessed: 2023-10-29.



APPENDIX A
DETAILED ALGORITHMS

Algorithm 1 MF-MDG(dep,dag,summaries,graphs)

1: mdg← NULL
2: // Process dependencies first
3: for dep ∈ dag[main] do
4: MF-MDG(dep,dag,summaries,graphs)
5: end for
6: // Process the file
7: mdg ← Generate_MDG(main)
8: for call ∈ mdg.external_calls do
9: module ← call.module

10: func ← summaries[module][call.func]
11: graph ← graphs[module].Get_Func(func)
12: mdg.Add_External_Func(graph)
13: end for
14: module_graphs[main] ← mdg
15: summaries[main] ← Get_Summary(mdg)
16: return mdg

Algorithm 2 Reaches2.0(n1,n2):-

1: Reaches(n1,n2) ∨
2: ∃ n1’,n2’,q,p,call:
3: Reaches2.0(n2’,n2) & // n2 sub-object n2’
4: n2’

ARG(q)−−−−→call &
5: Reaches2.0(n1,n1’) & // n1’ depends on n1
6: n1’

ARG(p)−−−−→call &
7: Reaches2.0(node(q),q’) & // q’ sub-object q
8: Reaches2.0(node(p),q’) & // q’ depends on p
9: PropsTraversed(n2’,n2) ==
PropsTraversed(node(q),q’); // the paths
n2’ −→ n2 and q −→ q’ have the same sequence of
property edges

Algorithm 3 Controls(n)

1: // get the function that contains n
2: f ← get_func(n)
3: params ← get_params(f)
4: if ∃ p ∈ params: Reaches(p,n) then
5: if is exported(f) then
6: return True
7: else
8: callers ← get_calls(f,p)
9: if ∃ call ∈ callers:
Controls(call.arg) then

10: return True
11: end if
12: end if
13: end if
14: return False

Algorithm 4 Get_Summary(MDG)

1: summary← Map()
2: for export ∈ MDG.exports do
3: init← export.init
4: prop ← export.property
5: match init do
6: case Function
7: summary[prop] ← init.name

8: case Object
9: summary[prop] ← BuildObj(init)

10: end for
11: return summary

Algorithm 5 BuildObj(obj)

1: object← Map()
2: for prop ∈ obj.properties do
3: init← prop.init
4: name ← prop.name
5: match init do
6: case Function
7: object[name] ← init.name

8: case Object
9: object[name] ← BuildObj(init)

10: end for
11: return obj

Algorithm 6 ConfirmGreedy(func,param)

1: if is_exported(func) then
2: return True
3: else
4: callers ← call_graph_query(param.name)
5: for call ∈ callers do
6: // caller is vuln =⇒ param is vuln
7: if ConfirmGreedy(call.func,call.arg)

then
8: return True
9: end if

10: end for
11: end if
12: return False

Algorithm 7 Confirm_Vuln(param,CGT)

1: stack ← [param]
2: while stack.length != 0 do
3: caller ← stack.pop()
4: if caller.isExported() then
5: return True
6: end if
7: // Params reaching caller
8: stack.append(CGT[caller])
9: end while

10: return False



Algorithm 8 Find_Taint_Paths(results,work_list)

1: if work_list == [] then
2: return results
3: else
4: // Get current and remaining paths
5: path,remaining_paths← work_list.pop()
6: node← path.last()
7: match node do
8: case SINK|RETURN:
9: results.append(path)

10: return Find_Taint_Paths(results,remaining_paths)

11: case CALL:
12: // Get called function and param
13: func← node.func
14: param_node← get_param(func,node.previous())
15: // Check taint propagation by the param
16: param_paths← Find_Taint_Paths([],[[param_node]])
17: sink_paths,ret_path← filter_paths(param_paths)
18: sink_paths← [path + cont | for cont in sink_paths]
19: new_results← sink_paths + results
20: if ret_path ̸= NULL then
21: // Param propagates taint, so continue the path
22: full_path← path + ret_path + node.ret
23: new_worklist← full_path + remaining_paths
24: return Find_Taint_Paths(new_results, new_worklist)
25: else
26: // Param does not propagate taint, disregard the path
27: return Find_Taint_Paths(new_results, remaining_paths)
28: end if
29: default:
30: // Continue the path by running the taint query at node
31: paths← taint_query(node.Id)
32: new_paths ← [path + cont | for cont in paths]
33: new_worklist ← new_paths + remaining_paths
34: return Find_Taint_Paths(results,new_worklist)

35: end if

Algorithm 9 Filter_Paths(paths,start)

1: // Get the paths that end in a sink
2: sink_paths← paths.filter((path) => is_sink(path.last()))
3: // Get the paths that end in a return node
4: ret_paths← paths.filter((path) => is_ret(path.last()))
5: if ret_paths.length > 0 then
6: ret_path← ret_paths.get(0)
7: else
8: ret_path← NULL
9: end if

10: return sink_paths,ret_path


